OF TIIF

LINNEAN SOCIETY

OF

NEW NOUTTH WALES.

WEDNESDAT, MARCH 31st, 1920.
The Forty-fifth Ammal General Mecting, together with the Ordinary Monthly Meeting was held in the Linnean Hall, Ithaea Road, Elizabeth Ray, on Wednestay evening, March 31st, 1920.

ANNUAL GENERAL MEETING.

Mr. J. J. Fletcher, M. A., B.Sc., President, in the Chair.
The Minutes of the precerling Anmal General Meeting (March 20th, 1919) were read and confirmed.

PRESIDENTIAL ADDRESS.

(Plates i.-ヶiii.)

Once again, after five years, we hold our Ammal Neeting under the agis of Peace. The interval since our last Annual gathering has been a rery eventful period, a year crowded with stirring events. This las been dhe in part to the fact that so many of them have brought reminders of the "eternal verities" in their train. First of all, we have had the Prodamation, and then the Ratification of Peace, and the prospect of a League of Nations. But the War ended by armistice and not by surrender, and the Peace which followed was a peace hy negotiation and not a peace after surrender; and so many nations bad been drawn into the War, that the problems for ronsideration and settlement were so momero and so diflicolt, that the preliminaries were protracted, and sometimes lacked unanimity. Now the war has ended, the return to a peace-footing has not come about quite so soon, or in quite the same way as perhaps was expecteri, so profoundly have word-affars become involved, and been upset. For example, the beliet that high prices for food and clothing would eome down when the warpurchases ceased, has not been realised.

Not less eventful or mowing to us has been nur witness of the epilogue of the story, which began "Anstralia will be there": then, in due time attaned the clearer note, "Australia was there"; and then the epilogue "Anstralia is here again"but not all, by about 60,000 . This story has been a telling illustration of what
the enemy quite failed to realise, namely, how great moral issues could stir and unite free democracies in a great erisis. The return of Anzacs and Diggers, as well as of those who whole-heartedly co-operated with them in all sorts of capaeities, and of the men of the Australian Nary, has demonstrated to us the characteristic modesty of the modest man, who, thrice armed because the quarrel into which he was drawn was just, then did lis hit, and played the game, but is loth to talk about his deeds. We are glay to know that the repatriation and demobilisation of the Australian troops has been almost complered; and that the problem of their return to aivil life is receiving the attention and consideration which it deserves.

One of the most moving events of the year was the simple but very effective ceremony observed, hy the wish of His Majesty, on the cleventh day of the eleventh month, at the cleventh hour, when, standing with uncoveresl heads, all business suspended and traffic stopped, our hearts took eharge of us, and we paid our silent and sincere homage to the memory of the honoured and mighty Dead, who, thongh dead, yet speak to very many. I think we all hope that the obsersance of this simple and tonehing ceremony, "the King's Great Silence," as it has been aptly termed, so appealing in its directness and in its naturalness. will become an anmal fixture; and that, in mison, we shall continue to hold these real and legitimate stop-work Meetings, not only "Lest we forget." but also to show that we have not forgotten.

Another stirring event in the early part of the rear, not withont its lessons, was a severe epidemir of inlluenza of a virulent type, which, as in other countries, not only upset, from top to bottom, the home-life, the edncational lite, the businesslite, the industrial life, and every other grade of our community life, but brought bereavement to many households and aggregates. Nevertheless, the blackness of the ealamitons clond, which overshadowed us for so long, wats not without some silver streaks of lining, in the shape of the unselfishness and self-sacrifice, hergias often as circumstances refuired, on the part of doctors, nurses, and volunteers of both sexes, intent on doing their utmost, at all risks, for the reliet of the prostrated and the helpless, and the suecour and comfort of the bereaved.

Another great event was the memorable visit of the Trimmphant Four. regardless of Father Neptune's approval, descending upon Anstralia like a "bolt from the blue." It was a great achievement, which justly evoked appreciative words and deeds. But have we, as a community, appreciated the real significance, and the inner meaning of this much-needed object lesson? Sir Koss Smith did not tell us how many strikes there were on the aerial royage; or how the mechanies held a stop-work meeting alot, and sad-"Our mates producet this machine: therefore, we are entitled to all the products of this stunt. It' you don't concede that, we will hiteh the wagon to a star, and go on strike." Ot course, we know why Sir Ross Smith did not mention the subject of strikes. So having shown very great enthasiasm and apprefation over a very suressful morerpise, becane the organisation, co-operation, eo-ordination. romeentration, single-mindedness. unity of purpose were about as perfeet, and as perlently provided for as they rond be. in a rery limited space, under rery stremums and exarting emolitions, waste of every kind, induding energy potential and otherwise, climinated, and friction sedued to a minimum-what more did the sequel amomet th than revenons it uns moufons, shikes, disenct, ebullitions of aceentuated, vituperative partyteeling on the ewe of two elections, see. sec. "Man is as scholir enger indeed to learn, but most forgetlinl having leamet."

Other events that have come home to us by the experience of a shortage of bread, or a shortage of sugar, and the interuption of communications with the distant states or New Zealand, or in some other way, are the numerous Strikes which have interfered with what we are accustomed to call our normal, every-day social and business-life and activities. Fortunately the meeting of the Australasian Association for the Advancement of Science was due next year, and not this, or it must have lapsed.

We have also had the disturbing experiences of a Federal Election and a State Election, both carried out with a great deal of friction, and personal as well as party-bitterness and recrimination.

June 13th, ensuing, will be the centenary of the birth of the Society's benefactor, Sir Willian Macleay. The Council is arranging for a Special Meeting, to be held on June 14th, the actual day of the amniversary being sumday this year. Further particulars will be furnished to Members in the Abstract of Proceedings after the Mecting to be held on 26th May.

Since the last Annual Mecting, more of our Soldier-Members, or Members who volunteered for war-work abroad, have retumed to Australia; and we have had the pleasure of personally welcoming some of them at one or other of our Meetings. We are now able to compile a complete list of those who have served the Nation or the Commonwealth abroad, in some capacity or other as follows:-

Active Service.

Aurousseau, M., M.C.
Badham, C.
Bickford, E. I .
Bretuall, R. IV.
Broom, Prof. R.
Carne, IV. M.
David, Prof. T. IV. E., D.S.O.

* Filled in action.

Grilitiths, F.
A special Honour Roll is in eontemplation, of such a character that coloured copies of it can be pretrared for insertion in the Parts of the Proceedings, so that every Member may have one, esperially those Members who live at a distance. It is proposed that the original shall be displayed in a conspicuons place in the Hall; and that it shall be formally unveiled in a becoming manner, as part of the programme of the Stecial Meeting for the celelration of the William Macleay Centenars, on June 14 th. It is to be a permanent, memorial recorl of the names of those Members of the Society, whon represent, to the rest of us, the great aggregate of comrades who suecessfully strove to save the rest of the world from Might as against Right. The Council thinks that Members would like to have a direct, persenal interest in this appropriate memorial; and it accordingly invites us to contribute, according to our means, a slare of the cost of providing it, as a tribute to the great aguregate which our Soldier-Members refresent. as well as to them collectively. I comment the propnsal to your favourable consideration.

The concluding Part of Yolume xliv., of the Society's Proceedings was issued on the 15 the instant. The complete volume (912 and xxaii. plo, 47 Plates, and 212 Text-figures) contains thirty-four papers, ten of whis's were contributed
by members of the Society's research stafi. These cover a representative series of the subjerts in which the Society is directly interested.

Our exchange-relations with Societies and Institutions outside the Commonwealth have begun to show gratifying signs of recoverg. The Bureau of international Exchanges at Wishington has been able tu resume its despatehes to this part of the world, atter suspension bronght about by war-conditions; and this means a great deal to the Suciety. Pustal communications have improved somewhat, though sill not altogether normal. Cousequently, Scientific Societies in nentral and other countries are seeking to fulfil the obligations which were interfered with ly alonomal cunditions. But it affords me rery special pleasure and sati-fartion to be able to amomere, that, atter the turmoil of war. five out of the seven Belgian Scientific Sucieties with which we have exchanged publications fur so many years, and from whom we were so abruptly eut off in 1914, have succeeded in getting into touch with us again. These are l'Academie Royale des Sciences des Lettres et des Beanx-Arts de Belgifue. Societe Entomologiqne de Belgigue. Societe Geologique de Belgique. Societe Royal de Rotanique de Belgigne, and Societe Royal Zoologigue el Malacolugique de Belgifue. I gladly arail myself of this "pportunity of offering to them the Society's cordial greetings on the resumption of their scrientific activities, its sympathy with them in the anxieties and trials which they have endured, as well as any hetp that we can give, if it be neeessary. The total number of exchanges received during the Session 1918-19 amomes to 799 additions to the library. received from 132 Sweieties. Institntions, de. and ten private donors, as compared with 657, 846. 1243, 1028, and 1285 fow the five preerding Sessions. Effort las been made, on the Socecty's jrart, to bring its despatches as far as possible up to date.

Six Ordinary Vembers were eleetel, fire have resigned dhring the year; we have lost one of our odder members by death; and, in addition, news came to us of the decease of one of om soldier-members some time ago.

Harry Stephfiss, like Dene Fry, was a very promising young biolugist. whose career ended prematurely amid the haver of battle. After leaving school, he entered the Depariment of doriculture as a cadet: later on he took the degree of B. Se., in Agriculture; and was subsequently apporinted to a Walter and Eliza Ifall Agricultural Fellowship with the object of doing researelh-wok upon Cereal Rusts. He had made some progress in this work, when war was declared, and he enlisted for adtive service in 1915. He left for the front, as Second Lient tenant, in Febrnary, 1916, and spent some time in Egypt. Thence he proreeded to Salishary, where he was promoted to First Lientenant: later, he aeeompraned his batalion to France, where, in May, 1917, he berame Captain. On the night of 18 th November. 1917, three weeks after his twenty-seventh hithday, he had just entered the trenell to which lee was allotted, when he was killed instantaneomsly by a bursting shell. Captain Steplens was elected a Member in 1915, but, in consequence of the pressure of his Thiversity and nther work. We never lad the pleasure ol weloming him to our Meetings. Professon Watt, with Whom he had most to do at the Thiversity, as well as Mr. Maidenc speak of him in the highesi terms as frossessing in a marked degree the fualities whieh go to make a sureessful investigator, as well as a keen sense of horomr and of duty. His Inisersity (omme was highly cretitable, as he gained the Remore Sedolarhip for Chmistry and Geology in his first year, and Mr. Maiden's prize for Agricultural Botany ; and first class honoms amd a loniversity medal af graduation. Biologieal researh in Australia has sufferen a great loss he the untimely deaths of the only 1 wo of omr Soldier-hembers who have not relurned to us.

Wilhiar Joseph Ranbow, elected a Member in 1893, migrated from England to New Zealand in 1873, and ten years later came to Sydnes. White engaged in jomrnalistic work, he became enthusiastically interested in matural history; and, in 1895, he was appointed entomologist to the Anstralian Museum, and continued to hold that position matil his death on 21 st November, 1919. He was especially interested in the -Lraneidae: and his mumerons contributions to a knowledge of this and other groups, include seventen papers in the Society's Proceedings for the years 1892-1902; and others in the Records of the Austratian Museum, and in the "Anstralian Naturalist." He was also the author of two useful additions to our popnlar science manuals, namely "A Guide to the Study of Butterflies." and "Mosquitoes: their Habits and Distribntion." Mr. Rainbow was personally known to many of us as a kindly, earnest, upright man, very keenly interested in his work, and rery desirons of helping others to realise the attractiveness and the interest of the womderfui Australian fama. One of his sons enlistet soon after the outbreak of war, and was killed at the Dardanelles (1) Hay 24th, 1915. This sorrowful crent hastened the death of his wife som afterwards. Another son also enlisted. and returned a few days after his father's decease.

Recent erents have brought about some changes directly or indirectly affecting the somentific life of the rnmmunty. Their decease has deprived it of two of mur scientifie reterans-Sir Thomas Anderson Sthart, Professor of Physiology in the University of Sydney : am Robert Etheridge. Junx.. Direator and Curator of the Australian Museum, buth, at one time, Members of this Soriety, and the latter, for some years, a Nember of "omeil.

Several of our Members have retired from artive work atter putting up long records ot faithful and protuctive service.

Professor Anderson Stuart, Dean of the Faculty of Medicine of the Unirersity of Sydney, and Chomman of Directurs of the Royal Prince Altred Hospital, has been a rery prominent figure in the educational and puthlie life of the State ever since his arrival in 1883. The develnpment of the Merlical Srhool and its growing influence as a factor in medical edncation, afford abundant testimony to his organising capacity and his forceful character. His death, on Fehruary $29 t h, 1920$, at the age of 64 . closes an impressive chapter of personal history. as well as a rery important stage in University history on the medirul side.

Robert Etheridie. Juyr., was, 1 think, the whest scientifie worker in harness in Australia. His first contribution to scientific knowledge, a geological fuartersheet map of the Yan Tean district of Tictoria (2 N.F.), embodying the results of his field-work during the preceding year, was published in 1869. His last, the second of two papers on the early history of the Australian Museum, was issned on 4th December, 1919. about a month before his decease: so that his published work covers a period of fully fitty years. He was the son of Robert Etheridge, Senr., to whom there is a very interesting" reference in Geikie's "Life of Sir Roderick Murehison" (1875) (Tol. ii., p. 259) to this effect-"Early in July. 1856. Murchinon betook himself into Gloncestershire to see some of his old Silurian haunts. Mr. Ramsay joined him, and some time was spent by them among the Silurian and Oolitio rocks of the Tortworth district, where they enjoyed the hospitality of Lord Ducie. Who accompanied them in their excursions."
"Among the Cotteswold hills," Murchison rerords in his journal. "we made rarions excursions in the range of the Lower Oolites. and were accompanied by a very intelligent person who had been in business in Cheltenhan, and
had 'guitted it for the hammer. This was Robert Etheridge. Judging from his celerity, his quickness in finding shells and naming them, and in lrawing sections, 1 said to Kamsay 'This is the man we must have to put our Jermyn Street Museun in urder." Geikie adds, in a footnote,-"Mr. Etheridge, whose merits were already known to Lord Ducie, had been asked by his Lordship to meet the geologists at Tortworth. He was soon after appointed Assistant Naturalist to the Geological Surver; subseruently, on the resignation of Mr. Salter. he heeane Palæontologist, and since that time has gradually risen to hold a foremost place among the palæontologists of this country." Robert Etheridge, Jumr., was a boy about nine years old at this time; and he seems to have inherited his father"s interest in geology, and expecially in palaentology; for, albont 1868, as field-geologist, he joined the statf ot the Genlogical Surver of Tietoria. so ably organised in 1852 and conducted for seventeen years lyy Dr. Altred selwyn, with the co-uperation of men like Richard Daintree, C. S. Wilkinson, C. DOyley H. Aplin. H. Y. L. Brown, aud others, who not only left their mark on the records of Victorian geology, bot subsequently nceupied important official positions in Qucensland, New South Wales. Sonth Australia, or elsewhere in the Commonwealth, or in New Zealand. R. Etheridge, Junr., on severing his connection with the Geological Survey of Tictoria, became palrontologist to the Geologieal Survey of Scotland, and atterwards senior assistant in the Geological Department of the British Ifusemm. In 1887. he came back to Australia to fill the position of palantologist to the Geologieal Survey of New Smuth Wales and to the Australian Museum, of which, in 1895. he became Curator, and later on Director. The list of his contributions to scientific knowledge, and especially those relating to the palaontology and anthropology of Anstralia is rery voluminous and valnable. Thirty-six of his papers, together with six joint papers, are to be fonnd in the Society's Proceedings for the years 1888-1915, together with one in the Macleay Memorial Volume. One needs to be a palæontologist to appreeiate the merits of his long-sustained work; but I think that it may be said of him, that he did rery much for Austrahian palæontology, what his father did for British palmontology. But over and above this, in connection with the Australian Mnsenm, he has left a good reeord as an able organiser and director. His labours ended on January 5th, 1920, in his seventy-third year, while he was away tor a holiday at Mittagong. We may hope for a more extended biography written by one who was a colleague, and had a direet interest in his work.

The untimely death of Dr. F. M. Gellatly, Director of the Commonwealth Institute of Science and ludustry, at the early age of 46 , is much to be deplored. He was appointei (hairman of Directors of the tuture permanent Institute, only so reenenty as Jume. 1918, with the object of orgmising the industral scientifie investigations of the Commonwealth. He prosessed some special qualifieations for the work to which he was appointed; but an attark of puenmonic intluenza prematurely aded his promising career on 24th September, 1919, and deprived the Commonwealth of an able officer for whom it will be difficult to find a substitute with like qualitications.

Several of nur Members, incholing Mr. J. F. Carne. Mr. T. Steel, Mr. C. T. Mussom, Mr. A. (f. Hamilton, and onr Corresponding Member. Sir Bahwin Spencer, of Mellomme, have recently retired from active official work, but happily without losing their interest in seientifie work generally. Mr. Carne's comection with the Department of Mines dates from 1879, and, on his retirement at the erd of the sear, he had heen Govemment Geologist for about four years. His enn-
tributions to a knowletge of the geology of New South Wales are numerous and important; and all he knows is not yet on record. Mr. Steel has been associated for many years with an institntion whell provides one of our necessary foodstuffs, ant, at the same time, is notable for its apreciation of the importance of the application of science to indnstry, and for its regard for the status and wel? fare of its seientific officers. Mr. Mussom has been a member of the scientific staff of the Hawkesbury Agricultural College ever since its fondation in 1891. Mr. Hamilton has been commected with the Department of Education for many years, and latterly a member of the staft of the Teachers' Training College. Professor Baldwin Spencer, hy his professorial work, his zoological and anthropologicat contributions, and the scientific records of his travels in Anstralian out-of-the-way places, has deservelly come to the front as une of Austratia's representative men of science. Those of the younger generation who are coming on, nowadays more than ever. need the encouragement, the help, and a share of the finit of the long experience of veterans such as these; and we may be sure that it will not be withheld when the opportunity offers. The Society is fortumate in laving three of them still on the Council.

To Mr. E. C. Andrews, who has been appointed to succeed Mtr. Carne, I would offer, on behalf of thembers, nur vordiat congratulations, not onty on his appointmen+ to the important position of Govermment Geologist, but also on his having such worthy predecessors to tullow, in carrying on the development of the geolugical knowledge of New South Wales.

To Dr. J. B. Cleland, who has recently been appointed to the newly established Chair of Pathology in the University of Aclelaide, ow congratulations are due. We regret that his removal to another State deprives us of an active Member, and also a Member of Council. But we know that his qualifications include much 'valuable experience. and that his appointment to Adelaide means an opportunity of undertaking effective work in a new field. We wish that he may be rery successful.

To Dr. T. Storie Dixson, too, one of our senior Members, I would like to offer. on behalt of Aembers, our congratulations on the recent announcement in the newspapers, that His Gracious Majesty the King, as Patron, has conferred upon him the honour of Knight of Grace of the Order of St. Tohn of Jerusalem in England, in recognition of his long and enthmsiastic serrices in connection with the St. John Ambulance Brigade, of which he is Commissioner in New South Wales.

A change of printers became necessary during the year, and I an glad to say that our new printer is giving satisfaction. The cost of printing of every kind, however, has increased considerably. Taking advantage of the opportunity of making fresh arrangements. the Council has decided to enlarge the size of the Proceedings, from demy octavo to crown yuarto. retaining the same size type. commencing with the volume for 1920 . This will not only give more room for illnstrations. but will simplify the work of supplying the reprints, which, by arrangement with the University, are furnished to Limean Macleay Feflows, who carry out their rescarch-work in the University laboratories, under the Regulations for Research Students. These, hitherto, have had to be specially printer.

The issne of the Monthly Abstracts, which was temporarily suspended, under war-conditions, after July, 1916, was resumed after the Meeting in October last, and will be generally appreciated, becanse it keeps distant Members and Societies in tonch with what the Society is doing in the interrals between the issues of
the successive Parts of the Proceedings. I would remind Members of the Council's injunction that the notices of exhibits at Meetings should be as briet as possible, and confined as far as possible to the scientific aspect of the specinens shown. Members are asked also not to exhibit too great a variety of different exhibits at the same Nleeting, as this is likely to necessitate too (mmplicaterl and too lengthy entries in imlexing them.

Concomitantly with the growth of the Socicty's library, and of the natural accumulation of its reserve-stork of publications, we have, for some years past, felt a pressing need for more shelf-room, and more storage-room. During the recess, the Comeil has provided for some important structural alterations in the Society's Hall, to meet these and other requirements, tugether with the installation of the electric light, and for sume necessary, new lasatury arrangements. These have been completed in a very satisfactory manner by the contractor. Mr. James Leckie, under the able superintentence of the arelitect. Mr. A. Wr. Warden, in time for the Anmmal Meeting.

The year's work of the Society's researelh-staft may be summarised thus. Dr. R. Grejg Smith, Mateleay Bacteriolugist to the Society, contributed two papers on "The cermicidal Artivity of the Eucalyptus Oils." whieh appeared in Parts i. and ii. of the Procedings for 1919. He has also completerl a paper "Ropiness in Wattle-bark Infusions," which will be communicated al this moulh's Meeting.

Dr. J. M. Petrie. Linnean Macleay Fellow of the Society in Biochemistry. has carried out an elaborate examination of the leares, and also of the muts, of Macrozamia spiralis, but, in both cases, the extracts failed to sield evidence of the presence of any poisonous substance, which was detrimental when fed tor animals. A ronsiderable amount of experimental work has been earried out with Ifeterodendron olecaefolia, in order to obtain the cranogenetic gluroside which is contained in the leaves. The adive primeiple can be concentrated into viseous syrup, hat hitherto all attempts to induce it to yiedel a crystalline compound have failed. The results of these two investigations will be commmieated to the Society. at an early date. in two papers, entitlet. "The Chemistry of IJaerosamia," and "The Stork-poison Heterodendron, incluling experiments on the Hydroeganie acid Content." lu addition to the foregning, work is in progress on the Native Pomegranate (Cipparis Mitehelli), which has proved to be anwher eyano-genetic plant, though not bitherto known to be, or even suspected ot' being poisonous. Alsu, a continuous series of quantitative experiments has becul nade, to determine the amounts of hydrocyanic acid ayolved from Zierio Smithii under various conditions.

Dr. R. J. Tillyard, Linnean Macleay Fellow of the Soriety in Zonlogy, contributed seven papers during the year, all of which have heen pablished. These include "On the Morphology and Systematic Position of the Family Mieropterygidue (sens. lat.), Introduction and l’art i.: "Mesozoie Insects of Queensland," Nos. $\overline{5}$. 6, and $\overline{7}:$ "A Fossil Insect Wing belonging to the new Order Parameopteral ancestral tw the Trielandera and Lepidoptera. from the Upper Coal Measures of Neweastle. N.S. Wr.": "Stulies in Anstralian Neuroptera." No. E: and "The Panorpoid Complex. Part iii." Dr. Tillyard intends to continue working upen the life-histories of Australian Seuropteroid Iusects, and to make an attempt to bring the systematie knowledge of ecrtain groups up to date in order to farilitate his morphologieal work. In Ortober. the Council granted him permission to risit New Zefland, in order to whtain important ma-
terial for the further working-ont of the phylogeny oi the Panorpoid Orders, and esperially the Family Micropterygidue, which has its headquarters there; and also to collect material in all Neuropteroid groups, in order to study it in conjunction with the closely allied Australian fauna. Good results were obtained, except in the Rotorua-Taupo district, where the rainbow-trout introduced into the lakes had exercised the first call on the insect-fauna in which he was mainly interested. But this risit to New Zealand opencil the way for an offer of the prition of Biologist at the Cawthron Institute, abwat to be established at Nelsom, which Dr. Tillyard has decided to accept: and, after to-day, we part with our Senior Fellow next to Dr: l'ptrie. He has bern a member of the Society's research-staff for five years; and his papers during that period have been a prominent feature in the Society's Procecdings. He las not only sturlied the Australian aspect of world-problems, but he has tried to open up world-problems from the Australian standpoint; which is my idea of what Australian workers, as far as possible and arcording to their opportumities and resources, should aim at doing. In losing Dr. Tillyard, what we regret is not so much that we are losing him as a Fellow of the Society, but that Australia is losing, him; and that our hopes, that an opening for doing what he is about to undertake in New Zealand, would be available for him in Australia, bave been without result. Consequently, it merely remains for me to roice, on behalf of the Council and of the Society, our appreciation of the importanes of the work which he has been doing so enthusiastically for so lomg; of expressing omr sincere regret at losing him, not only as a Fellow of the Socicty, but most of all as a scientifie worker resident in Australia; and of wishing lim every success in the new sphere of work which he is abont to enter. At my rate, I think he will be ready to acknowledge that his official connection with the Soricty has been helpful to him as a researchworker: and that the fruits of his work are, in some measure, his tribute to the menory of the benevolent and far-seeing man who matle the Society's Fellowships possible.

Dr. H1. S. Halcro Wardlaw, Linnean Macleay Fellow in Physiology, utiliser the opportunity afforlerl by the onthreak of pmemmont inflnenza, in the early part of the year, of making an important investigation in connection therewith. Measurements of the oxpgen-capacity aml other properties of the hood of influenza-patients were made; and the results were cmbodied in a paper entitled "The Venons Oxygen-content and the Alkaline Reserve of the Blood in Dnemmonic Influenza," which was published in Part iii., of the Proceedings for 1919. The work on the reciprocal lialysis of olood and milk has been eontimued. The effeet on the total solid matter, ash, dhomine. phosphorie acirl, and raleimm has been examined. It has been fomd, comtrary to expectation, that, when milk is dialysed against the blood nt the same species, certain of the inorganie constituents of the milk pass into the blood in ronsiderable quantity. The further surprising result. that the presence of the rell rorpuscles of the bloor materially diminishes this effect has also been obtained. An interpretation of these phenonena bas not yet been arrired at, and will need further consideration: as do also some other incompleted investigations. Dr. Wardlaw resigned his Fellowship in September, in order to take up a Thiversity appointment as Leeturer and Demonstrator in Plysiology: and, in this capacity, he is taking part in the work of the Commission appointed to investigate the prevalence of disease among mine-workers at Broken Hill. While regretting the Sucietrys loss of Dr. Wardlaw as a Limean Macleay Fellow, I would offer to him, on behalf of the

Council and of Members, cordial eongratulations on his appointment to the staff of the University, and of wishing him every success. His five papers contributed to the Soriety's Proceedings, as a Fellow for more than three years and a balt, are important additions to the volumes, and bear testinony to his ability to do high-elass researel-work.

Miss V. Irwin Smith, Limmean Marleay Fellow ot the Soriety in Zoology. has devoted her time te the study of Nematodes and of the lite-histories of the Brachycerous Diptera. Considerable progress bas been made with both gromps, in collecting material, in looking into the literature of the subject, and in the examination and drawing of specimens; and the resutts are abready very promising.

Six applications for Linnean Macleay Fellowships, 1920-21, were received in response to the Council's invitation amounced on October 99 th , 1919: I have now the pleasure ot making the first public announcement of the Couneil's reappointment of Dr. J. M. Petrie and Miss V. Irwin Smith to Frllowships in Biochemistry and Zoology; and of the appointment of IViss M. T. Collins, I.Se.. to a Fellowship in Botany from 1st froximo; and, on behalf of the Society as war-conditions have given place to something approa-hing a normal state of things. I have much pleasure in wishing them every suress in earroing out forir investigations. Dr. Tillyard was also re-appointed: lut. as already mentomet, in eonseguence of his contemplated removil to New Zeafand, he resigned lis Fellowship as from 31st March, 1920.

Miss Collins has guatifications which justity our expertation of an enlargement of the Society's scope of work in a very desirable dirertion. She has an excellent University record, smpplemented in an important way by some experience of researeh-work and of teaching. She won the Deas Thomson Scholarship and Professor David's Prize for Geology in 1914, and graduated in Science in 1915, with First Class Honours in Botany. Miss Collins was awarded a Science Researcl Scholarship in 1916 and the following year, up to the time of her appointment as Demonstrator in Botany in the University of Adelaide under Professor 'T. G. B. Osborn. For some time she has been actively interested in the effect of certain elimatic factors-especially drought and excessure sumbigh-upon the distribution and structure of Australian plants. This is a very characteristie, important, eomprehensive, and promising Australian problem. Her paper "On the Leaf-anatomy of Scaevola crasifolia," with spreial reference to the "Epidermal Serection." whieh was published in the Proceedings for 1918 , was the starting-point. In several papers almost ready for publication, the condition of leat-lampering and the glandular stractures responsible tor the same have been inwestigated in plants of other genera arailathe, some of whirl were ohtained from the Rroken Hill district. Miss Collins will now have time to eomplete these, and still further to derelop the sinhjert in hand. Two hranches of Seienee in whieh the Socicty is sperially interested, and in whieh progress has lagged behind, are the morphologry of dustralian phanerogams, and Anstralian sull-bateriology and the bionomies of soilorganisms, especially in the arid parts of Australia. Our old member. Mr. A. G. Hamilton, with omly such hatoratory-farilities as a private individual ran extemporise, and in his wearied leisure has, for years, mantully striven to accomplish some morphologieal and poltation-work: and, considering his drawbarks, his labours have not been in vain. The great hindranee to progress in this partienlar branel has been that, mitil 1913, there was no Botanieal Depart-
ment at the University; and no properly equipper botanical laboratory in this, the Mother-State of the Commonwealth. The Professor of Botany has been earrying out important investigations on Australian Cryptogams since its establishment. But Australian Phanerogams offer a no less attractive and importent field tor morphologieal research-work. We cannot but hail, with great satisfaction, the appointment of Miss Collins, becanse this is not only the first time that a Linnean Macleay Fellow in Botany has been appointed, but it is the first time that a botanical candidate has offered. Morenver, she is interested in Australian problems: and it is the investigation of characteristic Australian problems that is urgently needed, to the exclusion of purely academic biological problems which can be carried out anywhere else on the habitable globe; and which may be left to those who lack the opportunity or the resources for otherwise getting to work. Another somere of satisfartion is that the systematists may now hope for some of that needful co-operation, withont which they have had to work, as best they could. for so long.

Dr. A. B. Walkom, who snceceded me as Secretary, to-day completes his first year of service. As a Member of the Society since 1909 and as a Linnean Marleay Fellow in (reology, 1912-13, he began with some preliminary knowledge of the Soriety and its work, and was not a stranger to us. As Hon. Secretary of the Roval Society of Queensland for four years, and as President for one year before his removal to Sydney, be had the opportunity of gaining experience which has been very useful to him and to the Suriety. He was Lecturer in (icology in the University of Qneensland for six years, and was selected by the Council ont of thirteen candidates. As I have eo-operated with him in preparing an up-todate catalogue of the serial publications in the Soriety's library; and, in other ways, have been in close touch with him ever since his appointment, it affords me much pleasure to hear my testimony to his capacity for taking uf and carrying out his duties, as well as to bis zeal and efficiency.

The Council has also been able to provide for an assistant; and I lave pleasure in saying that Miss Watson is rery efficiently carrving out her duties.

One of the lessons which the War has forced upon the attention of the British. as well as other nations, is the importance of Science in the conduct of human affairs, and especially the need of a more satisfactory organisation of spientific effort. Scientifie experts in Great Britain are expressing the views, not only from the purely Britisl standpoint, but also from the British national wrimperial standpoint. Through their representative, the Royal Society of London, they are asking the Dominions not only to co-operate with the mother-country to this end, and fur this purpose; but also to join witlo the mother-country in an International cooperative effort with which it is associater, and for the establishment of which, some progress has already been made, as the result of two Inter-Allied Conferences on the future conduct of scientific work of an international character, held in Paris, November 26-29, 1918; and in Inly, 1919. Aceordingly, early in the year, the Royal Soriety of New South Wales, as the semior Srientific Soriety of the Commonwealth, was asked by the Royal Society of London "to take the necessary steps to establish some organisation in Australia which conld act as a National Researcll Council and nominate National Committees of snch Associations as you mar desire to join."

The Roval Society of New Sonth Wales accorlingly rommmicated with the Scientifi Societies in the different States of the Commonwealth, asking them to appoint delcgates; and when this had heen carried out. it arranged for a Con-
ference of the delegates to eonsider the proposal to form an Australian National Research Conncil. The Conterence was held on 21st August. 1919, when certain Resolutions were unanimously passed. As it is desirable that publicity should be given to these before the next Meeting of the Australasian Association, in January, 1921, they are accordingly included berewith. I may say that, in the appointment of representatives, the effort was made to lave all the States representet, as far as it was possible. To save space, monly the representatives' of the branches of Science in which the Soriety is directly interested are given.

1. That this meeting proceed to nominate a provisional Australian National Research Council.
2. That each important brauch of seience in Australia be represented on the Council.
3. That the branches of science to be represented include: Agrieulture, Anthropology, Astronomy, Botany, Chemistry, Engincering, Geugraply, Geoloyy, Mathematies, Metcorology, Patholegy, Physics, Physiology, Teterinary Sciener, Zoology.
4. That there be two representatives of each of these sciences, on the National Council.
5. That the representatives of the provisional Australian Natioual Researcll Council be:-
6. Aericclutlef-
A. E. V. Richarlson. M.A.. B.Se. (Victoria).

Professor R. D. Watt, M.A., B.Se. (New South Wales).
2. Anthropolon-
C. Hedley, F.L.S. (New Sonth Trales).

Sir Baldwin Speneer: K.C.M.G., M.A., D.Sc. F.R.S. (Vietoria).
4. Botiny-
J. II. Maiden, I.S.O., F.R.S., F.L.S. (New South Wrales).

Professor T. G. B. Osborn, M.Se. (South Australia).
8. Geolori)-
 (New South Wales).
Professur E. IV. Skeats, D.Sc., F.G.S. (Vietoria).
13. Pissioloit-

Professor H. G. Chapman, M.D.. B.S. (New South Wiales).
Professor IV. A. Osborne, D. Se., M.B. (Vietoria).
14. Teterinary Science-

Professor J. D. Slewart, B.V.Sc.. M.R.' '. T.S. (New Sonth W'ales).
Prot. 1[. A. Woodrutt. M.R.C.T.S.. II.R.C.S., L.R.C.P. (Tietoria).
15. Zoology-

Professor W. J. Dakin, D.Se., F.Z.S., F.L.S. (W゙e:tern Australia). Professor W. A. Haswell, M.A., D.Sc., F.R.S. (Now Somth Wales).
6. That Mr. R. II. Cambage, F.LI.S. (New South Wafes) he a member of the Australian National Researd Commen ant also its Honorary Seeretary.
7. That the provisional Comeil hold office until the new Comeil shall have been appointed at the next meeting of the Australasian Association for the Advancement of Seience. int Jannary. 1921.
8. That the election of the new Australian National Researeh Couneil be entrustef to the Comeil of the Australasian Assoriation for the Adrancement of Seience at its meding in January, 1921.
9. That at least ten of the retiring members of the Council shall not be eligible for re-election, but that this provision shall not operate at the election of the first Australian National Researeh Council in January, 1921.
10. That a provisional Executive Committee consisting of a Chairnan, an Honorary Sectetary, and three other members be appointed to act at once in all matters considered urgent, and that the members of such Executive Committee be:-Professor David (Chairman), Mr. R. H. Cambage (Hon. Secretary), Professor Chapman, Mr. J. H. Maiden, and Professor Pollock.
11. That it be recommended to this provisional Executive Committee that the Commonwealth Government he requested to make the financial provisions necessary for carrying on the work of the Anstralian National Research Council, and that for this purpose representations be made to the Prime Minister.
12. In the event of any of the members of the provisional Conncil or the Executive Committee, declining to aceept office, that the Executive be empowered to fill the vacancies.

The International Research Comeil has already provided for the establishment of (1) An International Astronomical Union to promote and co-ordinate the study of Astronomy and Astrophysies; (2) An International Union of Geophysics, to promote the study of the various hranches of the Physics of the Earth; and (3) An International Chemical Council, to promote international co-operation in chemistry. Steps will be taken to establish cognate Thions for other branches of Science. In the meantime, the Australian National Comeil has asked its representatives of Zoology to report on the desiralifity, or otherwise, of joming tire International Chion of Biological Science (when it shall have become established), more particularly as regards the section of Zoology; and they are inviting others to confer with them. The object aimel at in formmer an International Union of Biological Science is "to encourage the study of Bology in its rarious branches, and more esprecially" :-
(a) "To initiate and organise the conduct of researches which depend on, cor operation between countries.
(b) "To provide for their scientific discussion and publication."
(e) "To encourage the establishment and improvement of Research Laboratories which are accessible to students of all nationalities."
(d) "To promote the organisation of International Congresses."
(c) "To facilitate the preparation and issue of bibliographical pullications."

The sections proposed are-General Biology, Physiology, Zoology, Botany, Medical Sciences. Applied Biology.

Now, theoretically, what is proposed as above is admirable, and no one can gainsay the need for it, or at least for something of the sort, if the resources for carrying it out are forthcoming. But there is also another side to the question. which is not less important for us, and that is, the question of more, and better organisation of scientific effort from the purely Australian point of view. How are we to provile for this? At present men of Science in Australia are but a handful. occupied with official dutics, centralised in the capital city of each of the States, at considerable distances apart, with few opportunities for personal intercourse. The only comprehensive, unifying organisation in the branches of Science in which this Society is directly interested, is the Australasian Association for the Adrancement of Science. As a private individual, interested in Science, I venture to express the hope, that, after the next Meeting, to be held in Hobart in January. 1921, the Association will give up entirely the practice of reading
papers in the different Scctions, with a view to restricting its activitios in the following mamer-to providing opportunity, (1) for personal intercourse between the Nembers; (?) for Presidential Addresses as at present: (3) for discussing prearanged scientific problems of Sectional or gemeral interest: (t) tor disenssing matters relating to the organisation of scientifio etrort in Australia; and for doing what it can to aremplish it. In uther words, that it should leave to the Australian Scientific Societies the matter of reading and publishing scientifie papers; and assume the functions of an Australasian l'arliament of science, in the interest of promoting co-operation, and a better organisation of scientific effort.

As an example of one of many Australian problems-a world-problem in process of being opened up from the Anstralian standpoint. under Australian conditions - which is being earried out in the right way, namely by organisell teamWork, and, not in Sydney, but at a remote comutry centre, where the problem takes its origin. I call your attention to a scientifie investigation which is being carried ont at Broken Hill, under the direction of one ot our Members. Professor Chapman. A Technical Commission of Inquiry has been appointed recently, under the State Board of Trate, to investigate the prevalence of disease amongst mine-workers at Broken Hill. The insestigations will oroupy six months, and $£ 15,000$ has been allotted for the work. Professor Chalman, one of our Memhers. has been appointed Chairman of the (ommission, and was asked by the Premier to associate with himself in the Commission surh gentlemen as would be fompetent to take charge of difterent phases of the investigation. The Commission is making medical examinations of as many of the mine workers at Broken Hill as are arailable, with the object of ascertaining the degree of prevalence of mincres phthisis, lead-poisoning, and anchylostomiasis, It is hoped to study 4500 men who will form about $60{ }^{\text {co }}$ c of those cmployed alning the lode. Two large A-ray machines have been installed and radiograms are made of each man's ehest by Dr. W. A. Edwarts. Six medieal practitionces, working moder the direction of Dr. S. A. Smith, ate carring out a thonongh medieal examination of eacll man. When needed special lraeteriologieal and chemical and cetologieal tests are performed. Through the eourtesy of the Commonwealth Government, the serviees of $\mathrm{Dr} \mathbb{W}$. A. Sawyer of the International Ilealth Hame have been made available to the Commission for the investigation of the orrurence of lookworm. As a result, a complete working-mit. comprisine four mirroseopists and twon assistants under the rontrol of br. Rosenthal, has been transferred to Broken Hill from Queensland. The staft eoncerned in this medical investigation comprises seven medieal practitioners, four miroseopists, five assistants. and four statistical derks, together with finar members of the ('mmmission. The Commission will endeavour to establish a relation between the sign amd symptoms of disease noted in the mine worker, the apparanor of the radiographie picture of the lnngs and the pathongical changes which can be whervel in the lungs of dead miners. As the Commission has been asked to report on the conditions antecelent to the ocemrenee of ill-health among mine-workers. investigatims are being antle into the chemical and phesical characters of the dust prudued in the varions operations of mining. Some analyses are being performed upm the ash of the langs of mine-workers in the hope of adding to the store of our knowlodge ahont the dust present in the hangs. Simples of the dnst floatinge in the air of the mines are abo beine subjered to rhemical and phesical cexamatim. This part of the work of the commission has been under the comtrol of Dr. Il. S. Il. Wardlaw, who is asjisted hy four chemits. We look
forwarl, with great interest, to the results of this welt-organised, well-equipped, co-ordinated efiort, the most notable in these respects that we have yet had in New Suath Wales.

One of the events of the year has been the culmination of a disastrons drought: and though there has been relief in some districts, other localities are still much in need of rain. It has been a costly visitation to the State. The returns of the approximate number of live stock in New South Wales on 31st December, 1919, as compared with those of the corresponding period of 1918, show that there has been a decrease of 72,434 horses, partly due to very little breeding on accomnt of low prices and sinall demand, and in part to the drought conditions experienced in many districts for the greater part of the year; of 399,378 cattle, attributable mainly to the effects of the drought, namely, to death from starration, conditions not favourable to breeding, and the forwarding of cattle to market on account of the holdings not being able to carry large stock: and of $7,028,852$ sheep, attributable almost wholly to the droughty conditions, which have been rery severe un breeding-ewes, so that ower the greater part of the State, the lambing was a failure." In addition to the pecuniary loss represented by the depreciation of the State's flocks and herds by drought, it is necessary to take count of the fact that the Government is raising a loan of $£ 1,000,000$ by the issne of Treasury Bills bearing interest at the rate of $5 \frac{1}{2}$ per sent., with a currency of two years from March 1st, 1920, for the purpose of providing funds to finance advances to distressed farmers, and also to meet payments for seedwheat purehased by the Government for issue to farmers, and for other purposes. The drought, therefore has not only been another expensive intimation that Anstralia has still some lessons to learn about the solntion of drought-problems; but that Australia has not learnt all there was to learn from previous similar experiences, particularly the drought which culminated in 1902, and was responsible, among other losses, for the reduction of the flocks of the State from forty-three to about twenty millions. "Prevention is better than cure," but as periodical droughts have a legitimate place in Nature's scheme of things in Australia, Man cannot, therefore, prevent their occurrence. But is it impossible to learn how to mitigate, if not to present, at any rate in some measure, the periodical lery on the wealth of the State by dronghts? Why is it, for example, that it is left to droughts to cull the flocks and herds in the exacting way in which it is done by every serious dronght? Answers to these, or other cognate questions are not bard to find. What Anstralia especially needs to learn is how to cope successfully with drought-problems; and to learn that, it is neressary to understand and take to heart, that droughts are teackers, and not a curse; since they are a legitimate factor in Nature's scheme of things in this quarter of the globe. Rabhits and Prickly Pear, \&e., may be curses: but Nature is not responsible in any way for their foothold in Australia. A recent writer has diagnosed the state of Britain. before her eyes were opened by the War, in the following wordst- "We have slonghed our besetting sims in many mental processes. Before the War, men of science were grossly academic and individual: often abstract to the point of perverted mysticism; and the line they took encouraged the men of commerce to the contempt of pure knowterge. Men of science, merchants, the banks, and the Government were all in watertight compartments, working apart, and more than

[^0]this, conteming one another. The result was that, from the nation's puint of riew, the brains of the themist were wasted, the artivities of the merchants handicapped, the wealth of the banks locked up, and politicians a vain luxury. The British brain was working; but was a milch-cow for other astuter nations." What is here sain or implied abont the importance of the co-operation of men of sodence with commercial men and with Governments, and about the national lack of the appreciation and practice of it, before the Wars is only too true. But the men of science are not, equally with others, to blame for it. For, from time to time, their representative spokesmen have pointed out what was needed, but their wamings and their recommendations have too often failed to aronse attention or cticit any response. Or it noticel, their views have been dubbed "counsels of perfection." "r "arm-chair" advice, which the "practical" man can well atford to ridicule. or neglect altugether. Now, in the case of Australia, there is great need for a closer ant more effective co-operation of Science with the primary producer, the man on the tand. With the mannfacturer also, but in this case, the need can be easily provided for, since all he has to do is to make the necessary provision for increasing his staff hy the addition of such scientifie experts. chemists or whatever they may be, as circumstances recfure. But the ease of the primary producer is different, and it repuires the most carnest comsideration. It is necessary for him to learn and understand, what he is apt to owerlook, or fail to realise the imfortance of-small blame to him, meder the circmstances which have encouraged it-that there is a theoretical site to his fractiral activities, which needs to be taken into arowint; that in his case, as in others, the theoretioal side and the practical side are complementary, since true theories are merely the generalisations upon which practice is to proceed. Now a lack of appreciation of this neel of the reengmition of the complementary relations of science and practice in relation to drought-problems is phainly in evidence in books and in newspaper records: and I shall refer to some of them presently. Ome imperative reason for taking account of them henceforth is. what is implied in the statement that "Australia"s bid for greatness reste npon fer agrientural possibitities": " and that ronsiderable progress has been made in this direction since these worls were recorded, with more to follow in the immediate future. The imperativeness of the reason referred to arises in this way. ln the earliest days of settlement in the inland districts, the man on the land was a pastoralist solely. But now that he is doroting more and more attention to agrimiture it is necessary to remember that this means a steatily increasing removal of the natural cowering of the soid-in the shape of forest, or serub, or gqasses, or whatever it may he-and that his operations necessitate over a steadily increasing area, a profound disturbance of the soil-organisms and of their relations to the indigenous plants, which have come about as the result of Nature's long-standing armongents. Now these are matters whicle camot be treated with absohte indifference: for they mean much : and what they may do or mean, it is mecessary to leam.

When Anstralia was colonised in 1788, the first settlers found exerything very difterent from what they had been arenstomed to. In due time. a sjokesman took it upon himself to woipe the strangeness of the land to whirl they had migrated. This was Mr. Barron Field, a Sumeme (court dulge in Sydnes from 1816-23. To thim, the colnnists were the antipodes of the ohd folks at lome. Consequently Australia not only was, hut ought to be the Land of Lpside Down. Tt was the great Freak-Land. The plants were freaks, the animals were freaks,
"Gullett, II. S., "Anstralia's Dovelopment: the Coming of the Farmer," Chambers' Joumal, Jimuary, 1909.
the climate was freakish, the ronstellations were minamiliar. He not only set about cataluguing the freaks-"But this is New Ifolland . . . where the swans are black and the eagles are white; where the kangaroo, an animal between the sumirel and the deer, has five claws on its fore-paws, and three talons on its hind-legs, like a bird, and yet hops on its tail; where the mole (Ornithorhymbus paradoxis) lays eggs, and has a duck's bill," \&e., de.* But he also troceeded to accomit fior them on the supposition that other countres were ereated in the begiming, whereas the titth Continent was an after-birth, not comecived in the beginning, but whels cmerged at the first sinning, and was, therefore, curst ; and the treaks were the iruit of it.

At a later date (188t), another spokesman, Mareus (lark, expressech his views about Australia thus-"Enrope is the home of knightly song, of hright beeds and clear morning thought. . . In Australia alune is to be fomed the Grotesque, the Weird, the strange scribblings of Nature learning how to write. Some sere no beanty in our trees without shade, our flowers without perfume, our birds who camot fly, and onr beasts who have not yet learned to walk in all toms." \dagger These and similar effnsions are not to be regarded simply as nonsense. On the eontrary, they are most instructive and precious landmarks in the progress of a knowledge of Australia in Australia, in the days when Scence was too undeveloped to offer the real interpretation. The spokesmen were educated men, but men of a too literary education, tor whom scence-tearling was not available in their youth; but what they said was momanted with the idea that gives hirth to what is apt to be regarted as the onl! thing worth while, "That's the way to make mones.."

In Barron Fields time, eren sejentific men thought that species were reated as such. If the ammals and phants of Anstralia were freaks, then that was what they were intended to be. Marcus: Clark might have read Darwin's "Origin of Species," but, if so, it failed to impress him. But to-day, scientific men can explain the supposed freakishmess. Some of it was due to the fact that Anstralia was a surt of "Noalı's Ark" for "living tossils"; some of it had no particnlar' significance, lont much of it was the contward and visible sign of surcessful adaptation to perimbially ard conditions, wherely the supposed freaks were enabled to survive drouglits, and to live in hamony with a variable and, at times, exactinge enviromment. Inututis mutrndis, just what the man who goes on the laml needs to know.

It a still later period, only sixteen years ago, another spokesman, another kind of spokesman, expressed his views about lite on the land in Anstralia. These deserve eanstic criticism, not merely because what the writer las to say is nomsense, lut berause it is pernicions nonsense. I refer to a leading article, entitled "Anstralian Pessimism." in the Evening News for April 4th, 1903. Atter remarking upon the alsence of poems of a fresh, joyous nature written by an Anstratian; of successtul attempts to write on the two topics which engross writers of most other nations--viz, lowe and home-life, the witer proceeds to say-"The secret is to be found in the conditions of existence here: life in the Anstralian hush is one long weary gamble with malignant fate; no man feels sure of his retum for his labour and money; that incomprelensible deity known as 'luck' rules everything. The greatest care may be wasted, the greatest precau-

* reographical Memoirs of New south Wales. Edited by Barron Field (1825). pp. $4 t 51,494$.
+Preface to "Poems of the late Adam Lindsay "fordon" (1884).
thons fome to natught against the breath of dronght on the matage of the busb-fire. Life becomes a lung watching', with as meh eynerinn and fortitude as the wateher cean arail himself oft, the tmong of the greal wheel of fortme. Whel deato ont fablure to one matrs and sturess to anothere quite irrespective of their merits.
 lite is the dominant note of A ustrulian literature. 'Home" is just a phace where une makes money or luses it, as the rase maly be," and su wh. Nuw the most sppropriate label for this diatribe is just-"The Syucaker has sifuokerr." Austratia surcly uffers no locos standi to such sum undesirable alien als fiatalism. Sht tatalism hatmessed to ignorature is a hopeless combination, wheh deserve no guater fiom serente. Is there one retumed suldier who would deliberately say, ot the recent terrible was, that the incomprehensble deity known as "luck" ruled everything in counection with it, the only drawback being that the hoge armies a: the two sets of opponents had to engage in a death-struggle, in order to find out whicla side the incomprehemsible deity faronced, and intended to win? No Wonder that Austratia has never been in a position to export a smole bald of Wonl or of sheepskins, a single hide, or a trozen carcase! Nor wonder, also, dheat Anstablian bush-chilhen have never learned to sing "Home, sweet Honte: there is no place like Home"! And how delighttol, by romparison, it must be for it man on the land to live in a eomntry where the thermoneter is often down to zero or lower, for weeks or longer at a streteh, and the eulled store need to be honsod and fed for abont tive months, more or less, ont ut the twelve?

Another writers, in reference to the 1902 drought, suraks of it as-"the struggle of man against a relenthess, ermel enviromment; the sweeping awaty hy werwhelming whls of tortunes, won by sears ot toil; of the barren mockery uf "what has been, of disaster, desulation and ruin; of' men stripped and wounded fighting tu the end with enduring phek." Whe not emigrate to Siberia, Russia, or ('anada, which are not troubled with droughts, but merely have hard winters?
"Old Salthush" (Walter Smith) in his pwem entitled "Drought: written in 1877, when the Dronght was at its worst," \dagger thmishes another example. Ihis is realle, thongh it is not what it was intended to be, the story of a squatter wio, ather a run of good seasons, thonght he would take a sporting chance for jusi one Year more, at any rate; or perhaps he tossed-np over it. But the drought rame when he was not expecting it, and caught him wholly unprepared, with a tull complement of stock and sheep. It will be notieed that the starving anmals are not spoken of as crawling around the empty siloes, or the drientup dams, or about the artesian bore, which is on strike, but only along the binks of the empty "great stream-beds" where the "rotting carcasses" are. The following is portion of what the poct has to say about it:-

In the great stream-heds, mubly holns
Where once was water deej,
Are fillet with rotting eilleasises
Of cattle :and of sheep!;
A long the banks in rtacstly gromas
(Full hald their number gone)
The starving stock all feebly criul.
Poor wreeks of skin and house.
Oh: Demon Drought! that swerps away
The hart-emen weilth of years, wte.

- Syiney Morning Heratl, November 17 th , 1 sus, in "On the Land" column.

Still another quotation, this time a character-skelels from an article entitleet "The Man Ont Back," publisied in the Sydney Daily Telegraph of Decemtrex -9th, 1906. "Times have changed, and a certain type of the old Austratian pioneer has well-nigh gone. He was one who did things in a large way, and msually mate his fortme. He was an interesting flaracter, and his method, if fimitive, were effective. Kough in speed. plain of dress. fond of hard work. with long hours and simple food, he was yet genial in company. In businesio, he was hatally hard and stern, and he was esperially noted for hs shews dealings in moner-matters. He lived to make moner, and any bindrance that stom in his way was broshed aside by his strong personality. A pound saved is as goorl as two lounds mate. one that 1 knew used to say. He succeeded, amb accumnlated money. and, what is more to the point. stack tast to it. Foull have to leave your wealth behind you, and whoever gets it will mobably spend it reeklessly, 1 said to him unee, with a frankness that did not displease him. 'Well,' he answered with a hard laugh, 'it' those who rome atter me get halt' as much pleasure in spending it as I have had in making the money, l'll be perfectly satisfied.' When be took up 250.000 acres in the back countre he was content with a poor dwelling-place. A shelter from the rain was almost the main consideration. He dill not believe in making improvements. 'Eat wht the country. and then move elsewhere. was his mottu. 'It they want you to make improsements, throw up the comtry;' he said. In time of drmght his sheep were dying for want of water and teed. 'Let them die: it doen't pay me to feed them. I "an buy phenty more when the rain romen. That's the way to make money."

What is amiss with the sentiments expressed in the extracts fuoted? They are wrong in at least two respects. Firstly, they are views of Man's relation to Nature hasel upon self-interest, that is upon his moner-making instinct-the idea that it may be cheaper and less trouble to take chances, even if it results in drought culling the Hocks and herds, than it is to learn how to prevent it: and that "That's the way to make money." And, secondly: they take no accomnt whaterer of the complemental, scientifie sile of what dronghts are, of what they mean. and of the part they play in the ecomomy of Nature, and of Man's comeern with them from this point of siew.

Man needs rest after strenuous work, whether physiral or mental: and the physiologist ean wive a seientific extlanation of the need of it, and of the result of it.

The land alsu periodieally needs a rest or sweetening, and the biulowist ram give a surientifie explanation of the need of it, as well as of the result of it. It is a matter ot experience, that the rear after a dromght breaks up, is a bumper year for crops and herbage.

Nature las adopted two ways of rexting and sweetening the land, and, at the same time, of generally elearing up and putting things in order, getting rid wf weaklings and mulesirables, and putting species, that have got ont wt lomels, back into their proper plapes. These are. (1) ammally recmong, hard winters, as in the extra-tropieal comntries of the Northern Hemisphere the hardness varying with the latitude. This may be distinguishert as the winter-sleep or resting of the land. And (2) periodical droughts in the sultropical countries of the Sonthern Hemisphere, like Australia, Subtropical South America, and Sonth Africa, which have mild winters, not severe enough to give the land a thorongh rest or sweetening. The arrears accumulate until, sooner or later, the dronght comes, puts things straight again, strikes a balance, and makes way for a new start, the onset of
the bumper year. This may be distimguished as the dronght-sleet ir resting or sweetening ot the land. The difference between Nature": two methorls of doing the same kind of thing delends ongengraphical position. and on cosmical conditions of high and low pressure areas, sun-spots perlape. and on on; anto of these, the metemolngist and the astrommer can give a selentifie aromant.

Therefore to mail at droughts. to rall them a curse, to - beak of them as responsible tin a relentless, crued enviroment for the man whonge on the land in Australia, or as a Demon who robs the syatter of his hard-eamed wealth, some of it carned simple by allowing Nature to comsert grass, her own grass, into wool and mutton, is to be at ignorantly foolish as to say, night, the newl ot slepp and rerreation, the Sabbath-day* rest, and holidays are curses. untriendly Demons, because they nightly, weekly, or periodically intermpt his moner-making activities. And it might be supplemented by lamenting that lian is such an inperfect creature, because a perfect man shond have an irom comstitution. which would enable him to dispense with sleel, and rest. so that he oight minterruptedly be making moner, twenty-four hours per dien, seten days per week, three hmotred and sixty-five days per annum, year in and year out. That wonld be the way to make money!

The man on the land in the Northem llemishere atter sinerations of experience, has learned his lesson, ame is able to live in larmony with nis environment. The severity of the amually recorring winters compels him to honse and feed his stock: therefore he must grow enough fodder to provide for them, and he must cull his flocks and herds, oo that the demand for todder shall not exceed the supply. What helps him to leam his lesson is, that the recurrence of winterconditions, on the whole, is so regular, that he can arrange his programme of work by the ahmane; and, not less, that be certamly knows that he will be ruined, it he does not come up to the mark. So, knowing exactly what he has to do. and how to do it. and what will happen it he faik to do it, he makes good; and abstains from talking nonsmse and heresy abont his relentless, cruel enviroment, even when the thermmeter gues below zero; on abmit winter being a furse. In a word, he boommes a phitosopher, in the primary sense of the worl: and the idea of a lomg, wary ganble with malignant fiost and ice finds me) place in his mind.

The man on the land in Anstralia. Subtropical sunth Ameriea, and South Africal has to carry wht his work on a different basis inasmuth as he has to leam how to aldapt himself to Nature's armgements for giving the land its needed rest and swectening, not by a regularly, annally recmring winter-slecp, but by a periodical but not regularty ferbring dronglat-slect. Nature in Anstralia, has provided a genial climate. with splemtid matural pasture-grasese and forderplants; with no hard, amually recorring winter, rectuirnge the man on the lant to honse his stock, and grow (rop)s to teed them under these ciremmstances, as well as to coll wit all but what he can feed; and in many cisen, with proenrable water, thongl it may not always be visible on the surtiaee. Nevertheless, he has not get kemend to live in hamony with his anviromment, so sucestully as his representative in the Northem Hemisphere betanse thongh he linows from experienee or from historieal records, that dronghts arre ertainly to be lowken for from time to time, he eannot tell front the ahmare exally when lo expect them. This recuremee of dronghts at meertain intervals, which he samet ealenate.and Seience "amot definitely herp, him in that respert at present-is a disturbing lactor, which periodically makes his enviroment erratir, amb puts himont
of harmony with it. This mortaints introduces the temptation to take chances, which may be disastrous, and underlies the itlea of the "Gamtle ont West."

What Australia needs to leam, by the guidance and co-mperation of Science -and there is no better way of doing it -is, how to insure against damage by dronghts. That is:-(1) How to prevent the production of "necessitoms tarmers," requiring state aid. to the amount of about $£ 1,000,000$, in orler to rehabilitate themselves after a tisitation of dronght. The State Treasurer reports that, alreads, $£ 6000000$ has been dislursed for this purpose. Do hard winters in the Northern Hemisphere ever or often produce "necessitous farmers" reguiring to be relieved by the State, to such an amonnt?
(2) How to prevent dronghts from culling the herds and florks, (1) the enstomary colossal scale; and from obliterating the promise of harrests.

This can be expressed in another way-How can the mam on the land in Australia, with the aid of Science, leam to solve the following guestions?

1. In attempting to insure against, or to cope with droughts. is he attempting to accomplish the impossible: or is he only in some districts. or in some rases. trying to accomplish the impresible?
\because Or is he attempting to accomplish the posable (a) in the right way: or (b) with good intentions, but with insufficient knowledge or erguipuent, or with inadequate remomeres?

From time to time, esperially on fentive orrasions, intortant personages inclulge in forecasting the future population of Anstralia as 100 millions. or even 200 millions, and in descanting upon the neressity of filling u! the empty spaces of the continent. bant, in the reports of their speches in the newspapers, as far as I have seen, without insisting on the rery necessary stipnlation-it and when Australia learns. or is going to learn, whas leamed, how to cope with drought problems. The strength ot a chain is the strength of the weakest link. The mopulation that Australia can support, is the population that she can safely carry when dronghts come. The State is recorering in part from a very serere experience of dronght. Great activity is heing displayed in all the States in the way of facilitatiog the settlement of retumed soldiers, and immigrants on the land. This Meeting seems to me to be an upportume werasion for asking what, I think, is a proper and a pertinent question. herause dronght problems are primarily srientific problems, and, therefore, the gwidance and ro-operation of seience is neeted for their sulntion. The question. I would ask. is the twofold, neglecterl question-Huw is it, seeing that dronght-problems are su very important. that we have no Handhook, or Manal, or J'ade mecum of Australian DroughtProblems: and if not, why not; and how soon may we look forward to having one? We have manuals of the flora, of the fauna. of the birds, of the fishes, of the fungi, of the forder-plants and grasses, of the minerals and fussils, and sn on: and we know them to be of fundamental importance, and to be most helpful and suggestive. in the investigation of problems to which they relate. In anticipation of the risit of Members of the British Assoriation for the Adrancement of Srience in 1914, an armirable series of Hambooks, one for each of the older States. and one fio the Commonwealth as a whole, was pmblished. These served not only for the enlightemment of the risitors, but are standard works of reference torlay. What I have in view is something different from these, and something which is not intended in any way to elash with, or supersede the publications of the State Department of Agriculture, for example, some of which contain articles hearing upon some aspect or other of drought-problems. It is not to be a book
to teach the man on the land how to grow crops, or how to raise stock, primarily, or how to acermulate shekels, or anything of that sort . It in to be a hook solely for the purpose of setting forth the complemental, thenetiest side of the practical adtivities of the man on the land. esperially in relation to dronght-problemse with the object of enabling him to molerstand what it is he needs to learn in order to make the most of his resomres in providing against disaster; that is bow to live and keep in harmony with his somewhat pratic environment: and to understand that drought is mot a rurse, and that he is not called on to fight dromehts, lut to fight his ignorance about how to rope with them, whirl wight to be. sooner on later, enlightenable, provided that Seience is afforded an opportmity wf helping him.

Apart from the fact that mushela bouk as 1 have proposent, is arailable at present, the nees of such a book is not that nothing at all is known atome dronght-prohlems. but that an much of what is known is to be formel in batck mumbers of newspapers or in seientifie journals. where it is mot aceessible to those who want it, and could make nse of it: and that thesp contributions to knowledge deal only with particular aspects or cases, and not comprebensively with the subject in its entirety. What is wanted, as I think, is a selfeontained llandbook of the eomplementary, theoretical side of drought-problems. I give at setell of the gromud that, in my upinion. might be covered by it. just as something for consideration and diseussion:-

Sysopsis.

Nature turd Man, Natures lusurgent son-Disturbane of Natures Palance by Settlement, amd what that involves: the reckless or arelese introduction of undesirable Aliens, like habbits. Prokky Pear. \&e: and the reasom why they flourish in their new environment-Dronghts: their History and lemiodieity in Anstralia-Dronglits in South Atrica, and Subtropical sonth Amoriea-Their (anse and Dteaning in the Ecomomy of Nature: Nature's two ways of resting (1r swertening the land, and. at the same time, of elearing wh. putting things in orter. and striking a balance by (1) severe cold, or (2) more or less intense aridity-The year atter a drought, the bmper year for crops and herbage, and the scientific explanation of the resting and sweetening of the land-The Lessons to be leamed from the high level and low-level Flook-phans of the Mawkenury River Talley as in evilenee at Richmond; and from the desiorated Lake Eyre Basin of Central Anstralia, called by Gregory "The Dead Heant of Anstralia"-The Adapfations of the indigenons Plants and Animals to arid conditions, and the lessons to.be learned from them-'lhe Man on the Land in the Northern Hemisplere, with an ammally recuring hard winter, in hamony with his enviromment-The Man on the land in the somthern Hemispleve, with mild winters but periodieal droughts, whose periodicity cannot at present he ealdulated, not wet wholly in harmony with his enviroment-The need to comserve the fertility of the Soils and the indigenons grasses and fodder-plants-Disturbance of the Suit-organisms, and of their long-stambing association with the indigenoms lounts, especeially the Acacias and Eucalypt: : the Bionomies of Soil-organisms in the arid fertions of the Continent; and the risks from strong, dry, Westety Winds. in the absence of a cowering of Snow, when the natural covering of the gromet has been re-moved-Lessoms from Droughts; and the Application of the Lessons-Bihliograplys. as a guide to more detailed consideration of speeial subjerts-Index. ©e.

Happily there have heen and are men on the land in Anstralia, who have learom that dromglts are not a curse. thongh rablits and prickly pear may be:
that the lame needs a periodieal rest or sweetening; that it is the dry climate and the lighterlas nutritive native grasses and herlage, which are largen respensible for the excellence of Anstrahan wools: that it every seasom were a gool one the stock and sheep would suffer severely from parasites, and from diseases; and, lest of all, men who do not helieve that Nature's sreat scheme oft things, which, by shw degrees, has evolved from the womb of Time, has arrived at its present adranced state of development, for the sole and mly porpose of gratitying the momey-making insimats of the Get-rich-thuek Dollartom Shekelfords, just as and how they would like to be able to orter it. Records of the actual experience of intelligent and enlightened men of this kind, are among the things wanted: and some of it is alrealy on recond in the files of old newspapers. They are mon who can appreciate the words of Mr. Ronsevelt, when President of the Cnited States, in lis opening Address to the American Forest Congress, held at Washingtom, Jamary: 1905-"All ot you know that there is opportunity in any new romitry for the development of the type of thmporary inhabitant whose ite is to skin the comntry and go somewhere else. . . That man is a rarse and not a blessing to the comutry. The prop of the comintry mast be the business man who intendes so to run his business that it will be protitable to his rhildren after him. . . . I ask, with all the intensity I am capable of that the men of the West will remember the sharp distinetion I have just drawn between the man who skins the land, and the man who develops the countre."

The book should not be a one-man book, hut a team-work book, supervised loy a ceprable editor. It should be simply hat scientifically written by sperialists in the different branches, after the manner of the Handbooks prepared, at different times, for the Meetings of the Anstralasian amd of the British Assoriations lor the Adraneement of Scienere. But, for the chapters to whith they relate, and especially those on the lessons of hroughts and their appliration, from the practical man's side, the files of the newspapers, at least as tar back as the drmoltt whirls begam in 1888, whould be systematically looked nip. Rome of the articles therein are execllent, for they are often the records of artual ixperience and firsthand knowledge: and, as sumb, they are of historical interest. The cream of all these should be skimmed, smplemented as may be required, and put into the Handmok; and, it desirable, referced to in the Bibliography. Papers in serentifie joumals should be utilised in a similar mannes.

But the publication of a Hamdbook, in the way of propaganla, is not enough. The ammal output of looks is so enomens. that any particular hook is apt to he put on the shelf, and perhaps torgotten. Therefore sme propagandists are needed. A grow way of providing for these. I think, would be the endowment of a rourse of three anmul lectures. One lecturer always to be a seientifio man; another always to be a man on the land; and the third always to be a husiness man rapable of dealing with the statistical and financial asperts of dronght-problems. The lecturers to be appointed annually, a year in advance, su) that they may have time for the preparation of their lectures. The lecturers to be allowed to choose the subjects of their lectures, provided-and this is to be a sine qua \quad on-that the aim amd objeet thereof is to elaborate, to expound, to make elear, and, if possible (1r necessary, to amplify the Handlow, The leetures sometimes to be delivered in Sydney when the primary prodncers come to hold their ammal Congresses: and, sometimes in one or other of the centrally situated and aecessible country towns, as may he decided. In this way, attention would periorlically he formssed on the Handlook, and on the sulbjeet with which
it las to do. Disension thereon would be promoted. If taken up and entered into enthusiastically, the sulbject of drought-problems shoutd beeone a live subjeet, as it onght to be, and as it needs to be; and then we may expeet to make some progress.

Next only to the need of rightenusness, and of the maintenance of the integrity and weltare of the Empire. the question of how to conpe sureesstully with dronghts in Australia, stands second to none in its importance. Fon Australia"; hin for greatues rests upon this, inasmuel as her agrienlture ant other ponibilities c:an only be impretfectly realised without it
Arotralan lemblomiveots Achmis.
(Plates i.-viii.)
The Australian flora timnishes numerous examples of plant-structures, which, as one usualty sees them, are difficult to understand, partly becanse ther repre--ent steondary developments which have been superimposed on the primary, natural inder of things: and partly becanse one rommonly meets with emplicated adult stractures, of whid the early stages are not always readily obtainable. The so-rallect phyllodes of Australian Acacias are one of the most common and familiar examples of these plant-puzzles. These have been regarded as the "claseical" examples of phyllodes. hecause there are so many species of phyllodinemo Acacias, ame they are so widely distributed. Nevertheless, strictly speakines. they are not "phyllodes" within the meaning of the reeognisel detinition of these leaf-oubstitutes. For example, in the Glasary of Terms prefixed to the first molme of the Flara Australiensis (p. xxxix.) will he found the definition"Phyllodium = a that petiole with no blade." Asa Gray defines a phyltodium as "a petiote nsumping the form and function of al leaf-hade." Tn both eases, thene dofinitions are intenfed to apply to the flatened leat-substitutes of the Australian phyllorlinems Aeacias.* Bentham says of Division i.. Ihmlorlinene-"Leaven all (exept wi young seedlings and oecasionally one or two on roung branehes) redured to plyllotio, that is to the petiole either terete or angular or more or less bertioally dilated so as to assume the appearanere of a rigid simple leaf. with ant upper and a lower edge or margin, and two tateral simbir surfares, and dither sensile or comtracted at the base into a short petiole. the upper edge oftwn bearing 1. 2. or rarely 3 or more shield-shaped of tuberenlar or depresed glamin." (Fl. Austr., ii.. p. 319.)

But the so-ealled plydlodes of the Australian phyllodineous Acacias are unt -imply thattened petioles which have lost their blades. The eurrent statements about them, such as those quoted above, are imperfert generalisations hased upon inadetuate material. On the contrary they are the tlattened, mimary leap-axes or common petioles of hipinnate leares which have lost their pinnas anm it is the former which have usurped the form and function of the latter: and not flatened petioles whirh have usurped the form and function of leaf-hades. The so-falled phyllodes of Australian Aeatias may be long, or short, or very short. If long, they are the flattened primary axes, or rommon petioles, of potentially long bipimate leaves, with mumerous paiss of pinnar. It short, or very short, they are the flattened primary axes or common petioles of potentially

[^1]short. bipinnate leaves, with several, or mly one pait of pinns, whose pinne have ranished. Therefore, as the so-ralled phyllodes of the Austratian phyllodineous Aeacias are not exactly eomparable with the phyllodes of other plants, and are not phyllodes within the meaning of the eurrent definitions thereof, they should be distinguished from wrimary phylodes, and also have a distinetive name. A. they are neither cladomes nor plyllorlates. within the meaning of the rurrent hefinitions of these structures. 1 propose to eall them Euphylloria or euphyllodes, in the sonse that they are something more than is implied in the accepted definition of phyllodes: and, thereture. something more than simply flatfened petioles; masmuch as they really arr, as I shall show, in what follows, vertically flatienerl, primary leat-axes or common petioles, whose pinner have been supuressed, which have usumed the firm and function of leaves. Instead of Plyyllodineas and phyllodineons Aracias, I propuse to use the terms Euphyllodinese and enphyllodinemus Aracias, in mider to be ronsistent.

Several more detailed interpretations of the phyllordes. so-ralled. of Australian Acacias are on remord. One was offered ly Morren, in 1852.* Unfortunately. no copy of this paper is available in Sydney, and T do not know on what kind of evidence be based his views. But two anthors. Maxwell Masters and Baron von Mueller, have gisen the substance of Morren's hypothesis. Master: sayss-"When the blate ot the leaf is smppressed it often happens that the stalk of the leat is flattenct, as it were by compensation, and the petiole has then much the appearance ot a flat ribhon (phylloke). This happens constantly in cerfain species of teacia, oralis, \&e.. and has been attributed, but doubtless erronenuly, to the fusion of the leaflets in an early state of development and in the position of rest."

Baron won Mueller seems to have aceeptel Morren"s hypothesis, but withont mentioning the author of it. In his "Introduction to Botanic Teachings" (p. 25. 1877), be sars of the Anstralian Acacias-"This enormons number of congeneric plants [about 300 species] can conveniently be separated into two main groups, according to the structure of their leaves, whether consisting of a simple blade, or whether formed hy distinet leaflets. The first of this mimary division is callerl that of the Phylodinex, from a Greek worl implying leaf-like form, becanse the supposed simple leates are in reality formed by the confluence of leaflets, stallilets and stalks into one leat-like mass. or aroming to the more generally adopted but less areurate views simply dilated leaf-stalks (phyllodia): this metamorphosis is most readily demonstrated and proved by olverving the apparently simple-leaved Acacias in early growth, when the furst leaves developed by the young seedling will be found to be compound, consisting of leaflets arranged in two rows, thus forming pimme, several again of these pinnee forming the bipinnate leaf, the axes along which the leaflets are placed being also arranged in a pinnate manner. What in the phyllodinenus division of the genus Acaria is noticed only on the leaves of the young plant, becomes nomal thronghout for the second group, that of the Bipinnatæ."

A second interpretation is current in Textbooks of Botany. This is not less unsatisfaetory than the Baron's. It is frequently presented as a brief. definite, and apparently anthoritative statement-an axiom or a postulate, as it were, which the student is to accept in faith. For example. Bentham, in his generic flescription of Acacia, says-"Leaves twice pinnate or redueed to a simple

[^2] alrembe been mentimend on 3 . 335 [quoteri later on fon another reason] that a
 beaves of whicla are devoid of erreen blades whint the hat salks are developed as
 -tatements are based on no more logical arganent that this-The phylloulimank
 lodes of teamas are thattened petioles, which have lost their blades. The fallary

sumetime howerer, anthors venture for girn an explanation. lint the exphations know to me are mot less fallacims than the definitions of the phytbeder. suradied, of Australian Aracias. For example. Lubburk, in his "Flowers.

 *ays "The typeal leare of Acacias are pimate with a mumber of leaflets. On the other hamb, many of the Anstralian Acamias have leates (or, tu steak more mometly, phydoles) more or less chongated ur willow-like. but if we raise them from seed we find, for instance, in Acacia solicina, so called from its ? c_{o} semblance to a Willow, that the first leases are pinnate (Fig. 75), and ditter in mothing from those elaracteristic of the genus. In the later ones, howeror, the leaflets are reduced in number, and the leafitalk is shightly compreserd laterally. The fifth or sixth leate, perhaps. will have the leaffets reduced to a single pair, and the leat-stalk still more flatemed, while when the plant is a little wher, nothing remains exept the hattene pretione." Now the passage ghoted is very remarkable, but hardly more so than whers if similar impert to be fumal in wher bows. Such statements are impertery generalisations based npen inadephate material. Thengh put torwan in won? faith, they are neverthele pitfalls and stmbling-harks. both lion teachers and studemts. The first watement that "the typural hemes of Acacias are pimate" is fanlty. There are no Araciat with penmate leaves. On the contrary, the typoral hracias have twiee pinnate or hipimate leaver. S゙ext, "But if we raise them from seed we timd. for instance, in Acrein sulicina . . . that the first leawe are pinnate (lige.
 shown in lige. Th has no pinnate leat or leaves. The first is a hipinnate leat with one pair of pimne, the setomd is abse a bipimate leat with one pair of phame and with an indieation of the so-ralled phyllote on the mpper side: the thise is also hiphnate with me pair of pinnar, and indieations of the su-calla d
 :hylumes. su-called.
 unes of this sueries ret published. But if the seedling fyyred was mot an anomalons one. it was in ineomplete speriment and lathock did not notier that the first leal, whirla should have been a simply pimate leat, or pertajes a pair of "pposite simply pimate leaves, was mising. lat what bue partimbarly want: to know. is, why Lablanek call- the smotmere to wheh the single pair of
 rompersed laterally, amd then fimally herome the llattened petiole or phyllode' In other worts. on what gromets is it taken for granted that the pimat of the

[^3]bipinnate leaves of Aracia－seedlings with only a single pair of them，which ap－ pear sumesively atter the first simply pimate leaf，w in sume cases atter an ＂pposite pair of them，represent a pair of pime at the nowle immediately above the leat－stalk or petiole？I have not yet met with any description of Acaeia secdlings or Acaeias in which this question is answererl，or even considered， except by Preston，referred to later on．As a matter of t＇aet．the pair of pinnæ of bipinnate leares．With only one pair，surh as snccessively make their appear－ ance after the first simply pimnate leaf，or a pair of them．represents the apical pair：and what is below them is the entire primary leat－axis on common petiole，and not simply the ordinary petiole．That is to say，the succession of the paiss of pinne in the levelopment of a bipinnate leat with several paius ef pinnx，of an Australian Acacia，is hasipetal：amd not hasitugal，as tacitly assumed，and taken for granted．

It is interesting to mote，therefore，how two eminent bulogists，like von Mueller and Lubbork，independently came to the conchsion that，not merely the same sort of evidence，but the selfame aridence－the evidence afforded by the ＂first leaves＂of phrllodineons Acacia－seedlings－demonstrated and proved two divergent，and irreconcilable hypotheses：the metamorphosis of hipinnate leaves into phyllodes by the confluence of leaflets，stalklets and stalks in the one ease； and by the flattening of the petioles and the disappearance of the blades，in the other．What is wrong with these two disenclant eonclusions is not that one is correct，and the other incorrect；but that neither of them is wholly correct，and that both are partially incorrect．Mueller＊s hyputhesis is incorrect in so far as the leaflets and staklets，that is the pimar，are concernch：for these abort entirely， and take no part whatever in the formation of the so－called phyllodes．The evidence on that point is clear and conclusive；and one is at a loss to under－ stand how Nomren and he were led to think that the leallets and stalklets con－ cresced with the stalks or axes．But the stalks，that is the primary axes，or common petioles of the actual or potential hipimate leaves，the ordinary petioles together with the rhachises，do flatten to form the sin－ealled phyllodes，and are the only components thereof；and，to that extent，his hypothesis is correct．But supposing that there is a confluenee of leaflets．stalklets and stalks，why was Nneller content to call such structures phyllodes，when，by the curcent definition， phyllodes are flattened petioles，which lave lost their harles－neither more nor less？

On the other hand，Lubbeck＇s hypothesis is incorrect in supposing that，in the formation of Acacia plybllorles，so called，＂nothing remains exeent the flat－ tened petiole＂：whereas，in truth，everything remains except the finnar．But it is corredt in so far as the pinne are concerned．for these vanish entirely．

While lack of adequate material，and of personal knowledge of the plants as they grow under natural ronditions，are the ultimate reasons for the long－ standing，incorrect．current ideas about the phyllodes．so－ralled．of Australian Acacias，there are three main proximate reasons：－
（1）The ambiguous，heeause two general，statements abont the＂first leaves＂ of the seedlings of the Australian phyllodinems Acacias：and the neglect to deter－ mine the mode of the succession of the pairs of pimnar in the development of the hipinnate leaves．
（2）Either the non－recoguition of the presence of the＂seta terminalis＂of Bentham，or＂the recurved point，＂or the＂exemrent print＂of the common petiole or of its distal component，the rhachis；or，if noticer and mentionerl，the disre－
gard of its meaning aml signifieance. when disenssimg the natne aud interprettion ot Acaria-phyllowles, sw-ealled.

And (3) The omission to take into aceount the simple but very signitieant fact, that the petioles, or apparent petiolen of all the known dustralian bipinnate Aeacias. of which twentr-two species are described bey Rentham in the Flora Anstraliensis. are short on even very short, relatively to the length of the entie, primary leat-axes, or common petioles: whereas some Acacia-phyllotes, soealled, are not mly much longer than the petiotes of any existiug hipinnate Australian Aracia, being as leng as 12 to 20 inches in some species: but are even longer than the common petioles of the longest leaves of any known. bipinnate, Anstralian Aeacia.

I propose, therefore, to comsiler these three questions seriatim. and in some $^{\text {sen }}$ detail, because it is time the real nature of the so-ealleit phyllodes of Australian Acacias was recognisel and taken into account. The eurrent belief about them is a barren conception, which has obstrueted the pregress of knowledge. and leads one into the wideruess. If the en-ealled phylloles of Australian Aeacias are simply thatened petioles which have los their blates. there is nothing more to be said about them that is of any importance. But when one knows what they really are, it is a simple matter to reconstruct the euphyllodineous Aracias, ant, then having done this, to find corresponding analogues among the existing. hipimate species. And nat only so. but when one knows where, when, and how to low for reversion-foliage ant reversim-shots of the right sort, one can find Nature actually remonstucting then, as I shall presently show. Haring arrived at this stage the study of the emphyllodineons Acarias takes on an mtirely now, and extremely interesting and promising aspect.

The "Firat Lehten" of the Seedinge of Aéstraline Acachas.
From the extrate given abow, it in evident that, by the expression the "first leaves" of Acariaseedling:, Hueltre and Lublonk mean-and the same remark will apply to other authors who express themselves similarly-the earliest leaves whel suceessively develop on roung seedlings: and that neither of them takes accomt of the simply pimate leat. or sometimes a pair of opposite. simply pinnate leaves, which is, or which are actually the first to appear.

The foliage of the roung seedlings of the Bipinnata is similat to that of other plants with bipmate foliage. in that the earliest leaves to make their appearance are of a simpler tope than those which follow them in later stages of the development of the enmplete hipinnate leat. The mareh of progress as is usinal, is from simple to complex.

The very first leat is an abuptly pimate leaf. with several pairs of leaflets, or there may be an opposite pair of them. The secom is an ahmptly bipimate leaf with one pair ot pinne and more or less mumerons pairs of leaflets. Now this leall. and other like it, whel follow. represents and corresfoms to a leaf like the tirst, in whith the appeal pair of teatlets has been replaced by an apieal bair of pimat: while the lower pair, or pairs, of leatlets, counting from above. have been suppremed. That this is the comed riew to take is shown by the presence of the seta termimatis, or terninal seta, in whell the primary leaf-axis lerminates in betly cises. This is the remmant of a terminal leatet in the first, abruptly fimate loaf': and the remmant of a terminal pima in the abruptly bipinnate second leat., and in others like it, as will be tisensed more in detail later on.

In scedtings of a. discolor, one of the very rommon bipinnate Aracias of the Sydmey distriet, for example, the first leal is abruptly pimate with abont six fairs of leatlets; the second, third, and fonth may be bipmate with seven pairs of leatiets on the sceond and third, and twelve pairs on the fourth. The fitth, sixth, and seventh may be bipimate, with two pairs of pimne; these correspond to a leat like the first, in which the apical pair of leatlets, and the pair next below, have been replaced by pairs of pinna' The eighth lear may have three bairs of finnx; this corresponds to a leaf like the first, in whech the apical pair of leaflets, and two pairs next below, have beem replaced by pimax. Atter the eighth the number of pinne may increase by one pair more or less cousecutively in succeeding leaves, until something approaching the naximum is attained. In one seedling however. and the unly one seen. the thirl leaf zad two pairs of pinne. In seedlings of other speries. the number of pains of pinnar inereases sumetimes a little sumer, sometimes a little later, much in the same manner as describen above in A. disculor. The terminal seta, unless accidentally missing, terminates the common petiole of every leaf, at every stage of growth. Therefore, the mode of succession of the pairs ot pinner in the gradual development of the hipinnate leat is basipetal, and not basitugal, as has hitherto been tacitly assumed and taken tor granted in every case that has come under my notice.

The prinary leat-axis of the first, abruptly pinnate leat may be slightly longer than that of the second bipinnate leat with one pair of pinna, but the latter have more than twice as many leaflets. As the number of pinnace increases, the axis lengthens proportionally, until it reaches its final dimensions. When the maximm number of pairs have been developed it will be noticed that the petiole is relatively short.

Young neellings of the Euphyllodincer. odd enough to show the transition from hipimate leaves to euphylonles, are very interesting and instructive. They are the embodiment, and, at the same time, the visible presentment or pieture of an intense struggle between two antagonistir tendencies or forees. On the one hand, the hereditary tendency to produce the ancestral type of foliage makes a start in the normal way. The first leat is an atruptly pinnate leat, or, in some species, there may be an opposite pan of them. The secoud leaf is an abruptly bipinnate leat with me pair of phine, just as in the semdings of the 3ipinnatare. Very soon, somewhat sooner in some species than in others, the antagonistic tendeney, the euphyllode-producing tembeney, nowablays also in inherited tendeney, manifests itself, and, after a few preliminary stages, the usurper succeeds in swamping the natural tendency to contime the production of bipmate foliage. This commonly, lut not always, happens before the sedings are strong enough to ewable the bipinnate leaves to develop a second pair ot pinno: and, in such species, the second, third, fomth, fitth leaf or some later on way be the carliest complete puphyllode.

The object of the struggle is to get rid ol the pinnac, whose leallets are the transpiring and assimilating organs proper. and to substitute for them the vertical, flattened. leaf-tike leaf-axes or common petioles, or euphyllodes, capable of taking over and carrying out the functions of the leatlets on a more economical basis for regulating the water-supply and expenditure. It is important to realise this; and that the contest is not betreen flattening, ordinary petioles, and leafhlades, whirh are to vamish. Now a substitutional stmeture, and a structure for which a substitute is heing provided, cannot eompletely coexist and function in all resperts simultaneonsly. In the ease of the substitation of enplyylodes or
flattened leat-axes for pairs of pimate from the sature ot the rase the sulstitution or replarement camon take place instantaneously in a thas, but only by gradual, intermediate stages. It necessarily follows, therefore, that some indieation of both can and mayy be prenent at the same time, but in an inversely proportional ratie. $1 L^{\circ}$ the pimme are strongly in evidenore after the struggle begins, the emplythode will be only slightly indicated; wherean it the euphyllade is strongly in the ascemlant, but not yet complete, the pimme will show sigis of some kiml wr other that they are on the wane. The swampinge euphylludeprofuring tendenty usmally acts too promptly in romes seedling to show the inveracly froportional relations between the two contstants very satisfactorily. Pat groul examples of reversion-foliage, and the leaves of reversion-shoots show them most beautifully and convincingly.

Sir John Labbock, atterwards Lord Jrebury, in lnis great book "(on Seedlings" (1803), mentions or desrribes or eleseribes and figmes seedlings of seven species of Acorria. But his material was very limited, and sumetimes restricted to a single seelling. It is remarkable that the speries. whose seeds he was able to get, are all out-ot-the-way or inland spreres, and do not include a single example of our common and familiar speodes. Lubbock was interested in them as seedling merely: and it was not his object to diseuss the natme of the enphylorles of thome that were enphyllodineons species. Having complete seedlings at his disposial, he was able to recognise, this time, that the first of six of them was an abruptly pinnate leaf. But of two species, not tigured, t. (Iswaldi and A. acanthocarpu he says-"Leaves rompound and abruptly pimnate or reduced to phyllodes," and "Frist leares eompomad, almuptly pinnate": but as he makes no mention of the presence of bipinnate leaves in either case, one does not know how to take these statements, since his desroptions of the seedings of these two species are all that are avalable at present. On the other hand, he desribes the first six leares of a seedling of A. Burkitti as bipimnate. This is the ouly Aearia-seetling, without an abriftly pinnate first leat. or a pair of them, yet recorded. Labbork also recognises the presence of bentham's terminal seta in the seedlings of two streeres, bur untortunately he lowates it on the petioke. Thus, of the first six leares of A. Burkithi, all bipinnate with one pair of pimme. he says "petiole exeurent between the pimma, with a subulate slender point." Also of t. verticillata he say: "Leases at first pinnate then bipimnate, then reduced to phyllules . . . petioles laterally enmpresed . . . ant pror reeting bevoml the pimes with a subulate acute aristate point." The petiole of a compromd leat is the portion ot the common petiole or primary leat-axis, below the lowest pair ot pmona; therefore all the pinna are attarhed to the thachis: consequently it is the common prifole or its distal eomponent, the rhachis, whieh terminates ja an exourent foint or terminal seta. If the petiole terminates in an "excorvent foint," then, sime the latter in athote the prair ot pinnte, these mast ho attached to the petiole-which is absmol. We correcty adds, however-. "rhachis ot pinmar exoment in the form of a small subulate point." And he shoukd have sait-commom petiole, or the rhachis which is its distal component, with an exonrment pmint. liut, areeptimg the emrent itea, that the phyllodes of Arouias are simply thattened petholes, he taritly assumed and tomk for granted. as he lial in the earbirr passage quoted abowe, that the single pair of pimate of his hiphmate leavem was the lowest or basal pair, whereas it is the apieal or nppermost. pair which appeas first : and that the stalle to whele the pime were athached was the petiole, whereas it was the common petiole or primary balaxis, as is proved by its ferminating in an exeurrent point or taminal seta.

Mr. R. H. (imbage hak recently taken up the study of Acacra-seedlings where Labbock letf nif: and, from his extensive knowledge of the Australian thora, and of Acacias growing under natural conditions, he is eminently 'faalifed to undertake it. Since 1915 , he las published tive instalments of a monograph on ". Leacia-Seedings." which inclute hescriptions and exeellent photngraphs, ot the seels, pools, and young sedlings ut fifty-five species. This is an exrellent begimning of a very important contribution tw knowletge. which can only be done troperly as he is loing it. with prsonal knowledge of the plats under natural rombitions, and with adequate material. As it is necessarily a leisure-time study, he deserves, in an especial mamer, all the encouragement and help that we can give him. It be will take into consideration the evidence 1 am now bringing forwatrd, and will modify his terminology aceordingly, I venture to prediet that his work will become more inspiring and interesting even tham it has been.

Cambage's papers and illustrations show admirably, how promptly the - Wanping eftert of the nsurting, cuphyllorle-poducing tendency takes place in all the muphyllodineons species he has described, with the expeption of 1. melanoxylon. This is one of a small gronjo of exceptional speries, which includes at rubidu, and apparently also the non-Australian speries, -1 . heterophylla, that is in need of sperial and detalen study of good series of gradational stages.

The transition from an abuptly pinnate leat, or more usually from a bipinnate leaf with one pair of pima, or sometimes two pairs, to the first complete enphyllode, of seedlings of the euphyllorineous Australian Acacias, may take place on any leaf, from the second to the ninth, or even later, according to the species, and according to ciremmstances. The difference in scedlings of the same species is mainly due to the absence or the presence of lingering stages of the dwindling pinna. It is usually, hut not invariably, complete before the seedlings are able to develop leaves with two pairs of pinne. Cambage has found it to be the second leat in A. adatu (not counting the members of the opposite first pair of simply pimmate leaves separately), in abont a dozen specimens, so that 110 hipinnate leaves witb one pair of pinna had a chance to develop. He has also tound it to be the third leaf' sometimes in A. excelsa. In the seeding figured by me (Pl. ii., fig. 2) it is the touth leat. This is the seedling of the speeies (frobably A. implexa, as Mr. Cambage has been good enough to advise me) which has fimmisherl me with my best and most instructive reversion-shonts and surkers, because the euplyllodes are so long. up to about 9 inches. I was not interestel in the plants hefore they were scorched, and the portions of the plants above ground killed, but without damage to the root-system, by a bush-fixe, or in some cases injured in other ways: and there has not been time yet for the new shoots to flower; and I have leen unable to find adult, uminjured plants in a condition suitable for exact identification of the species. In the seedling shown. the first abruptly pinnate leat had three pairs of leallets, but the aprieal pair, and one of the next pair below, were missing, when I got the specimen. The seeond, thirl, and fourth are bipinnate, with only one pair of pinnse in all of them. One pinna of the second is damagert, aml is represented by one leatlet and a portion of its tellow. Above what remains of the damaged pinna in the position shown, the terminal seta at the apex may he seen in the photograph of the common petiole, projecting to the left. The fifth is a short, relatively broad. comHete enforilode, 23 inches long: the sixth is longer bul narrower: the seventh is still longer: the eighth (bent in the photo) is $7 \frac{5}{16}$ inches long. In average sample of a eomplete euphyllode from a reversion-shoot, 8^{3} incbes long, is show
beside the seedling on the left. My reversion-shouts show fitteen later stages that are skipped in this seedling, to be referred to later un.

Of sisteen bush-seedlings of al, falcata, the first complete euphyllode was the fifth leat in mine, the sixth in six, and the seventh of one; the leat immediately preceding the first complete euphllode in each of two seedlings had two pairs of pimme. Ot sixteen bush-seedlings of , t. myrtifolia, the first complete euphyllode was the fitth of two, the sixth of seven, the seventh of six, and the eighth of une; seedings of this species also sometimes have one, and occasionally two leaves with two pairs of pinnce. Seedlings of -1 . linifolia, of which the first complete emphyllode may be the sixth-ninth, may also have one leaf, or two leaves, or, as in one of my specimens, thre leaves, with two pairs of pime. The leaves of secdlings of A. suaceolens often show most interesting lingering stages of dwindling pairs of pinnse, the last of which may be represented by only a single pair of leaflets, with the terminal seta at the alrex ol the rhachis; and this is quite as conspromen at the aphees of the succeeding euphyllodes. Further details will be found in Cambage's papers. *

The Tlermad Seta or Receryed Pont of mife Bipinxite Leates and Etpmiclones of Australian Achedas.

No. 3 of the definitions given in Bentham's paper on the Mimosere, reterred 10 later on, is very important, namely-"A small point terminates the petioles whether common or partial, in all in nearly all limoseue. It is usually setitorm, though sometimes short and thick, and occasionally almost foliaceons, sometimes apparently contimons with the petioles [i.e., the common or partial petioles as lefined on p $32 t$; lout not petioles in the sense in which some later anthors use the term, fohwing Kunth], at other thmes failing readily off. This point has by some been termed al gland; but, it wonld appear, erromemaly. It may pussibly be the rudiment of a terminal jima or leatlet; but as there is no evidence leyond its position [i.e., terminating the common or partial petioles] to shew that it is so. I have been unwilling to give it any other mame than seta terminalis."

Now this was written some seventeen vars before the 1 mblication of Darwin's "Origin of specces." Chapter xiii., ot the "Origin" deals, in part, with the subject wf Rodimentary Organs. Darwin's treatment of the subject gave an altogether new view of the importance and significance of rudimentary organs and vestigial structures. To-day, remmants and vestigial structures mean very nuch more to the moplphlegist than they did seventy-cight years agn. Then, Pentham knew of "no evidence, berond its position," to say more than that the seta terminalis was possibly "the rudiment of a terminal pimna or leatlet." 'Today, I imagine, no one qualified to spreak, will take exeeption to the statement that it really is, what Benthan. seventy-eight years ago, said it possibly might be. The seta terminalis of the pari-pimnate leat of r'assia Candolleana, for example: a common garden plant, or of the pari-pimate first leaf of Acacia-seedlings. undoubtedly represents the remmant of an aborted terminal leatlet, corresponding to the terminal leaflet present in Robinia pseuducaciu, for example; just as. in the bipinnate foliage of sedlings or of the adult flants of the Bipinnatae, or in the bipimate foliage of seedlings, on the voung cuphyllomes, and frequently on the adult (uphyllodes of the Enphyllodinex. unless accidently missing, it repre-

[^4]sents the remmant ot a ranished terminal pinna corresponding to the terminal pinna of the impari-bipinnate leaves of Caesalpinia Gilliesii. (Pl. ii., fig. 1).

Moreover the setae terminales of the reversion-foliage of A. suavcolens are sometimes green and foliaecous. like incomplete leaflets or a pair of leaflets (Pl . i., figs. $4,8,9,10$) ; and the leares of reversion-shoots of A. implexa (?) and A. podalyriaefolia sometimes have thread-like rudiments of the axes of the terminal pima present, without leaflets, but with a terminal seta at the apex (1 ㄱ. viii. 5,6).

Admittedly, the seta terminalis is of no practical importance to the describer of species. Nevertheless, in his paper on the Mimoseae, almost all the species of which have bipinnate leaves, Bentham took the trouble to discuss what he conceived to be its meaning and significance. It was unfurtnate, therefore, that, when he came to deal with the Australian Acacias in the second volume of the Flora Australiensis, especially as the euphyllodineons species far ontnumber the bipinnate species, he took no account of the seta terminalis, as defineci in the paper on Minosex, or of its significance, except that he merely mentions its Dccurrence, under another name, the "recurved point," in two only of the twentytwo species of Bipinnatæ which he describes, as if these were the only two species in which it was to be found. Thus of A. polybotrya he says-"the rhachis terminating in a recurved deciduons point" (p. H14) ; and of A. leptocledu-"Pinnas $3-5$ pairs, $3-4$ lines long, on a common petiole of $\frac{子}{4}$ to $\frac{1}{2} \mathrm{in}$., ending in a recurved point" (p. 416).

But the recurved point, or seta terminalis, unless it is accidentally missing, is usually ergually constant and significant, not only in other bipimate Aracias in Which no mention is made of its presence; but also on the leares of seedlings of the Euplyyllodineae, and at the apices of euphyllodes, especially in the young stages. Bentham furnisherl descriptions of 271 species of euphyllodineons Acacias. It is remarkable, therefore, that the setae terminales of some of them did not attract his notice, or arouse lis suspicion that the so-called phyllodes of Acacias were something more than merely flattened petioles.

Kerner is the only anthor known to mef who rightly recognises that there is a restigial stheture at the apex of the so-called phyllodes of Acacias, which, in reality, is Bentham's seta terminalis, in which the common petiole, or the rhachic, its distal component, terminates: but not the petiole, as Lubbock expressed it.Thus he says-"In many of the retches of the Southern European flora (Lathyrus, Tissolia, Ochmes) but especially in a large number of Australian shmbs and trees, principally acacias (Acacia longifolin, falcata, myrtifolia, armata, cultrata, Melanoxylon, decipiens, etc.) it is the leat-stalks which are extended like leaves placed verticalls, and then the development of the leaf-lamina is either entirely arrested, or has the appearance of an appendage at the apex of the flat, green leaf-stalk or "phyllode" as it is callerl."* As far as the Acacias are eoncerned, the appendage at the apex of the "phyllodes." here referred to, is simply Bentham's seta terminalis, or recurved point, the rudiment of an arrested terminal pinna, in which the common petiole, or its distal component, the rharbis, terminates. It is not, as Kerner supposes, under the influence of the current dogma, that Acaci:phyllodes. so-called, are simply flattened leaf-stalks or petioles, the remnant of an arrested leaf-lamina. The pinnæ only have been arrested, and not the rhachis as well. Consequently. the terminal seta retains its norimal position at the apex of the rhachis, that is, the apex of the common petiole, or the primary axis of

[^5]the leaf. But that Kerner should be the only author, so fiar as 1 ran leam, to have recognised the wecurrence of an apical, restigial structure on the so-called phyllodes of the Anstralian Acacias; is both surprising ant interesting. His mistake, like the mistakes of others, was attributable to a lack of aderuate malterial for study. Nevertheless, his observation is notable.

The meaning and significance, and in some cases the ocerrence, of the terminal seta or recurved or excurrent point, or rudiment of the terminal pimat. of the leares of the Austratian Acacias, whether in the seedling-stage or otherwise. have received such scant consideration from anthors, that a comparison of the leaves ol Acacias with those of other gencra with remarkabte bipinnate leaves is not only very instructive, but what can be learned in this way needs to be emphasised and allowed for

For comparative purposes, the most satisfactury material is afforded by the leaves of three plants belonging to exotic gencra, more or less rommon in gardens in Sydney. I am unable to tind anything about them in any books alvailable to me, from the particutar standpoint in whiet f am interested in them. These are Cosesalpinia Cilliesii Wrall.. native of La Plata States, which is of interest because the leaves have a terminal pinna, but the pinnee lack a terminal leaflet; Jacaranda oralifolia R.Br., native ot Brazil, which is remarkable because the leaves have a fugacious terminal pima which is wanting in the mature leaves, the pinne have a terminal leaflet, and the monde of suceession of both the pimme and the leaffets in the development of the bipinnate leat is basifugal: and the West Indian Calliandra portoriconsis, whose leaves, like those of the bipinnate Acacias, have neither a terminal pinna. nor have the pimme a terminal leaflet; but, in lowth cases, especially in the young leaves, unless it in aceidentally missing, the terminal sete are conspicuous.
C. Gillicsii has leaves up to nearly T inches long, to the base of the terminal pinna; with twelve or thirten pairs of short pinne, with about eight to ten pairs of leaflets. As in the Aeacias, the leares present anomalies. Sume of the pimar are alternate insteat of opposite: one of a pair is sometimes missing: the terminat pinna is oceasionally missing; the number of pairs of leatlets of the pimas is variable. The leares show:-(1) that the internotes are about as long as the spread ot an expanded pair of leaflets, measured from tip to tip across the partial rhachis; (2) that the pime of the lower pairs are fairly at right angles to the axis. but that the apical pair and several pairs next helow do usually move inirards stighty, so that there may be some slight overlapping of the lower leaflets of the apieal pair and the terminal pair, even though the latter has a longer petiote than the others: (3) and that the petiole may be no longer than the lowest internode, or half as long again: but however much it may be, it is but a small fraction ot the length of the entire axis or eommon petiole. Fig. I of Pl . iii.. represents the upper portion of a leaf, in whell the pimate of the apical pair are at right angles to the axis: and this was ehosen for illustration beeanse the terminal pinna was tully displayed. Lubbock fignes a very foung seedling of this speries, with only the first leat, which is abmptly pinnate, but nu finthor particulars are given.

The longest dacarandal laf that I have, withont portion of the tip. whieh is missing. is 212 inches tong. petiohe 23 , with 32 pairs of pimme. some of which are alternate. Lomer leaves mathe seen on some trees. Mature leaves rately show anything at the apox, but the hasal sear of something whelh is mis-ing. I fipure a small teat from a young plant 8_{5}^{5} inches tong. which should have eighteen pairs of pinnar and a teminal pinna: but the terminal pima. and four pairs of
pimme are represented by large leaflets, some of them with serrated edges. I have also other leaves showing more adranced, but still, incomplete transformations. On the other hamb, one ean get examples in which the terminal pinna is mesent. but the leatets are not expanded. In this condition, it is apt to be tugacions: and one often finds only a withered or broken remnant of it. The hasifngal succession of both the pinnæ and the leaflets in the development of the bipimate leares is very interesting. The pinnm in the basal region are usually short; in the middle region they are rery long, with munerous pairs of pinnæ, and a terminal leatlet. The internodes may be as long as, or shorter than the spread of an uplosite pair of expanded leatlets. The petiole is relatively rery short, as long as ahout two or three, or more, internodes, if sume of the possible lowest pinna do not develop. The variable length of mature leases on the same plant, that is the variable mmber of the pairs of pinnæ present, is. I think, attributable to accidents, at different stages of growth, to the apical portion of the leaves before the basitugal development of the full number of pinnæ is eomplete.

The leaves of Calliandra have up to six or seren pairs of pinnæ. As in the bitinnate Acacias, the terminal pinna, as well as the terminal leatlet of the pinnæ, has been arrested; but, in both cases, their remnants, the terminal seta, are present, unless accidentally missing, and are especially noticeable in young leaves. Of a leat with six pairs of pimm, the length of the common petiole was $3 \frac{1}{8}$ inches; the spread of a pair of opposite expanded leallets $\frac{11}{16}$, or about the lengtio of two internodes; and the length of the petiole $-\frac{1}{10}$. The petioles of these leaves, proportionately to the length of the common petioles, are the longest I hare met with; and the length of the internodes is less than the spread of an opposite pair of leaflets; but this canses no overlapping as the apieal pair of pinne. and one or two pairs below them move upwards and inwarts, and the basal pair move downwards and inwards.

The vomest leares of -1 . discolor that one can get, show excellently the terminal seta both of the common petiole and of the pimme (Pl . viii.. fig. '2). Also that there is no addition of pimnæ at the apex of the leat, after the lowest pinnaz are developed, as in Jacuranda. All the pinnæ that are to be present in the mature teaf, are represented in the primordium ot the leat: and when the pinnæ of the roung leaves move intn place, and the leatlets expand, the finno are all equally developed. Similar statements are applirable to the rery young leaves of A . decurrens.

Fir. \because - of Pl. iii., sluns the leaf of a seerling of this species, with three pairs of pimae, the middle pair of which illustrate the incomplete basipetal development of the leaflets.

Due recognition of the meaning and significance of the terminal setre of the leaves ot the bipinnate Acacias, and especially of the leaves of seedlings with only one pair of pinne, is the key to the umberstanding of emplyillodes. Whatever else may be wanting, the apieal pair of pime is always present, unless aecidentally missing, except in deeadent stages such as are shown in Plate vii.

The Petioles of the Leates of Bipinnate Austriliax Acacias

The emphylloties of some Anstralian Acacias are very long, from 12-20 inches. In eonsidering the nature of such remarkable developments as these, it is necessary to eonsider some of the characters of the leaves of the bipinnate Acacias. and esprecially of their petioles.

Seventy-eight years ago, Mr. Bentham monographed the species of Mimosa. He began his paper by formulating some definitions.* Thus he said-"Before entering into descriptive details, some pretiminary explanations may be necessary relating to some of the terms used in characterising Mimoseco, and applied by different wrrters in different senses. . . . I have uniformly adopted the phraseology usually followed by De Candolle, giving the name of pinnae to the primary divisions, and of foliola to the ultimate divisions [of the bipinnate leat']. . . I have also designated by petiolus commmis, the whole of the sta!k to which the pimae are affixed, not (as is done by Kunth), that part only which is below the lowest pair of pinnæ, and by petiolus partialis I hare meant the whole of the stalk to which the foliola are attached." Accordingly, in this papar, Bentham refrains altugether from using the terms petiole and rhachis.

The adoption of the term common petiole. in the sense defined, has the advantage of aroiding a possible difficulty-namely, if the portion of the common petiole of a bipinnate leaf below the lowest pair of pinnae, the petiole in the Kunthian sense, is longer than the internode imnediately above, how is one to be quite sure that at least one pair of pinnæ, below the lowest pair present, has not been suppressed; and that, consequently, the supposed petiole is only apparently, and not really, the actual petiole?

When Bentham came to deal with the Aeacias in the second volume of the Flora Australiensis (1864), he adopted a somewhat different and mixed terminology, partly as defined above for the Mimoseae proper, and partly in aecordance with the definitions given in the Introduction and Glossary prefixed to the deseriptive matter in the first volume. While still using the term common petiole Ior the whole of the stalk to which the pinne are affixed, he also uses the term petiole, in the Kunthian sense, for that part which is below the lowest pair of pinna; and he also uses the term rhachis. But 1 do nut understand Bentham to use the term common petiole as synonymous with the term rhachis, as defined in the Introrluction-" 39 . The common stalk [of a componnd leaf] now which the leaflets are inserted is called the common petiole or the rhachis."

If one examines the impari-pinnate leaves of Tecoma capensis (4 pans), T. radicans (4-5 pairs), Lobiniu psendacaciu (S paiss), Ailanthus glandulosa (up to 14 or more pairs) - all common garden-plants, with leares of the same type. vaxying considerably in length accorting to the number of the pairs of leaflets. with failly large leaflets, much about the same breadth-it may be noticed: (1) that the lengtlo of the internodes corresponds to, or is a little longer than the greatest breadth of the leatlets, so that these may be fully exposed to the light without any overlapping: (2) that the leaflets are fairly at right angles to the axis to which they are attached; (3) that by the lengthening of the petiole of the terminal leaflet, this also is failly displayed without overlapping the leaflets of the pair next below; and (t), that the petioles-the portions of the common petioles below the lowest pair of pinne-are relatively short or very short, no longer sometimes than the lowest internode, or half as long again, or a little longer.

If, next, one examines the pari-pinnate leases of Cussia Candolleuna, also common in gardens, with four pairs of leaflets, it may he noticed:-(1) that the internodes are abont as long as, or a little longer than, the greatest width of the leaflets: (2) that, in the absence of the terminal leaflet, the leaflets of the first pair, or of the first and second pairs next below. nsually move slightly inwards,
*Lentham, "Notes un Mimoscac, with a short Synopsis of Specios." Hl roker"s Jommal of Botany, Vol. iv., P. 342, 1842.

While the two still lower pairs are more or less at right angles to the axis; (3) that there is a terminal seta representing a remnant of the missing terminal leatlet, unless it is accilentally wanting, as it often is in the full-grown leaves, which is green and very conspicuous in quite yonng fresh leaves; ant (4) that the petiole, real or apparent, is somewhat rariable in length in different leaves, and may be about half as long again as the lowest internode, or even a little more.

In the pari-bipimnate leaves of the Anstralian Acacias, it will be noticed- (1) that, in the absence of the terminal pima, represented by the terminal seta, the pime of the apieal pair invariably, as far as 1 have seen, move inwards so as almost or actually to touch or even slightly overlap; that those of a few pairs below, if the pairs are mumerous, may also more inwards, but that some of the lowest pairs may be more or less at right angles:-(2) that the internodes are about as long as the spreat of an (opposite pair of expanded leaflets measured from tip to tip, but may he slightly longer: the internorles of the same leaf may also vary slightly in length-and (3) that the petioles, apparent or real, are short it the leaflets are short, exeessively short sometimes as in A. Baileyana, and A. Jonesii, but much longer, though still relatively short, if the leatlets are long as in A. pruinosa, or very long indeed, as in A. elata. Following are the measurements of the leaves of the five speries arailable:-
A. Baileyana-4 pairs of pinne; common petiole. $1 \frac{1}{8}$; lowest internode, ${ }^{\frac{1}{2}}$; petiole, $\frac{1}{8}$ inch. (Pl. ir., fig. 1). The largest number of pinnæ noticed is five pairs. The leaflets of this species are not sensitive.
.t. discolor-9 pairs of trinas: common petiole, $t_{\frac{1}{2}}$: lowest internode, $\frac{5}{16}$; petiole, 1 inch. In another leaf on the same branch, the petiole was no longer than the internode above.
A. decurrens- 17 pairs of pinnx; common petiole. 51: lowest internode, $\frac{1}{4}$; petiole, $\frac{7}{8}$ inch.
A. pruinosct-6 pairs of pinna; common petiole, 66_{4}^{7} : leaflets up to $\frac{3}{4}$: lowest intemorle, $\frac{7}{8}$; petiole, 15 incin.
A. elata-5 pairs of pinme; common petiole, 93; leatlets ur to 15 (Bentham gives up to 2 inches) : lowest internonle, $1 \frac{3}{4}:$ petiole, ${ }_{2}{ }^{3}$ inches. Three other leaves have the petioles somewhat shorter. This speries has very long pinne, up to more than 8 inches.

Pipinnate leases may be short, or long, or of intermediate length, acworling to the number of pairs of pinna present: that is, according to the number and length of the internodes, and the length of the apparent petiole. The number of pairs of pinnæ present in a given length depends on the length of the leaflets, and this is a very variable quantity.

The bipinnate leaves of A. elata and A. pruinosa, of all the twenty-fwo species described in the Flora Anstraliensis, and as described therein, have the longest leaflets. Therefore, they may be expectel to have, as they actually have, the longest internodes, and the longest petioles, real or apparent. No seedlings of enphyllodineous Acacias have as yet, been described by Cambage, with leaflets promising to be anything like as long as those of A. elata.

Allowing abont 3 inches as the maximum length of the petioles of the Australian bipinnate Aeacia with, by far, the longest leaflets known, what valid ground is there for supposing, if the so-caller phyllodes are simply flattened petioles which have dropped their blades, that they can attain lengths of "from fi in. to $1 \mathrm{ft} . "$ (A. mucradenia), "above a foot long, the upper ones $\frac{1}{2} \mathrm{ft}$. " (A.
cyunophylta), "lower phyllodia (i) 10 in. lomg" (.t. Limdleyi). "3-10 in. loag or even more" (A. puchycarpa), and others, as lescribed by Bentham? I have euphyllotes of A. longifolia ul, to $13 \frac{1}{2}$ inches long. and $1 \frac{1}{2}$ howad; and Maiden
 long. Allowing one-thire of the total lengetly tor that ot the petioles, colphyllodes $12-20$ inches long-it they are simply flatened petioles whith hawe low their thates-shonld belong to potential bijpimate leaves 3 to 5 feed long?

The emphyllodes of Australian Acacias may be short or they may be long. It very short, they are the dattened ases of sheries. which. if they had not be-
 lons, under similar circumstance, they shombl have numeroms pairs ot pinuar, as shown in my photographs (Pls. r.-vii.) of leares of reversion-shoots of a spores with long elphyllodes, up to 5_{1}^{3} (Pl. ii., fig. 1) inclues long. wren ionger. Bint thattened pretioles of leares of Ahstralian Aracias, which have lost their hardes, as long as $12-20$ incles, are mythical struetures: and the idea that there are we may be such is nothing less than fantastic!

The coment idea that the emphyllenter of Anstralian Acacias are simply flattenes petioles which have lust their blates, is a harten roneception which bas retarded the progress of knowledge. If that is all they are. one is preduded from disenssing the guestion of what sort of bipinhate Acarias the enphellondinems Acacias wonld or might be it they did not develof enphyllodes.

But when it is realised that the emphyllodes are the thattened. primary leafaxes on common petioles of bipinnate leaves which have lost their pinnse, it becomes possible to reconstruet them thenretically in a very simple way, and then to find analognes ot them among the existing Bipimnate, since these include Acaeias of which the adult leaves have-ome pair of pimme only. "on a common petiole of aliont $\frac{1}{2}$ inch loug," as Bentham remods of" . 1 . ('illberti, or " 1 or 2 pairs, the eommon petiole about i inch" (.t. suberosa), or any number of pais ut to "usually 10 to 20 pairs" (.t. deallata, length ol "ommon petiole mot stated), "r "15 tw 20 pairs, the common petiole 2 to 3 inches" (.1. Bidurilli), wrosibly even more, if one were to search caretully ower abombane of material.

The simple methen of reconstruting them is, to masure with a pair of compasses the lenglh, from til, to tip aross the partial rhadis, of a good pair of opposite, cxpamded leathets on the bipinnate leaves of a sealling. This will give approximately the lengit of an internole. Then measme off the intermbetes on a emplollode, beginning at the apex, aml what is orer, regard as the petiole. This will enable one to calculate appoximately the possible mumer of pairs of pimar that could be present. If one can get a sededing with a leaf with two pairs of pinmar, whe can compare the length of' the internowe with the lengeth of an opposite pair of lealleds. Having done this. then look for the hipennate analoge anong the hipimate specede keseribed lọ Benthan, or others, and

 will show Natures motherl of actually doinge it.

Texthowk sometimes mention, in an indefinte war, the ownernee of rever-sion-toliage on abhyllodineous Arable whelh have been pruned atherwise injured. Lahbork and Thomés ligute sprays of A. melanorylon, with both emphyllorles and bipinnate leaves: and other authors mention similar peculiarities. Thes
species is an exeptional one in need of sperial investigation. It is a species which I have not harl the opportumty of examining. A. lomyifolia is much infested by bovers, and one can find plants which have been broken by people in getting the flowers, but I have never met with reversion-foliage. Seedlings of it falcato are otten so badly attacked by insect gall-makers, that the growing point may he killed, but 1 have not found that it induces the produetion of reversionfoliage. Plants of A. myrtifoliu often show a dismganised production of crowded euphylodes, apparently due to fingoid attacks. but 1 have failed to find re-version-foliage.

Quite the most satisfactory species for foliage of this kind is - . suaveulens, becanse one can get it in abundance. Aivancerl seenlinss up to 5 feet high, seem to be partienarly liable to fungoid attacks, which sometimes seriously intertere with, or even kill the growing-point, witen resulting in large excrescenees of abnormal growth on the smmint. If this happens, not too close to the gromod, it frequently results in an outburst of reversion-foliage along a portion of the stem, or on the proximal portions of any tranches that may be present. This will often supply most instructive stages in the transition from bipinnate leaves to enphyllorles, which are not shown in normal seedlings.

Eleven examples of remarkable leaves (nat. size) are shown in Plate i. These are of interest berause, in addition to the ordinary apical pair wt pinne or this and the second pair next helow it, some of them show pais: of reduced pinne, on single reduced pinne, pairs of leaflets or single leatlets, at different levels, on the margin of the developing euphyllode or half-euphyllode. instead of on the midrib; others show foliareous terminal seta; and two have three leaves at a mode. Figs. 1, 3, and 11 have no or but slight development of the lower side of the euphyllodes. All three have an odd jinna below the first pair of pinne, or just below the second pair (the leaflets missing in Fig. 3); and, at a lower level, a pair of pinna with a reduced number of leallets, wh the margin of the euphyllode. A. staveolens is remarkable in this respect, namely, for the transterence of the leaf-buds to the margin of the emphyllode, instead of their remaining on the midrib.

Figs. 2 and 6 show two pairs of pinne (one pinna missing in Fig. 6) and a single, small pinna, with but few leaffets, on the edge of the emphyllode. They are figured esperially to show, what I have seen only in the reversion-foliage of this speries, in which it is common-the ocenrrenes of three leaves at some of the nodes, of whin the middle one is always the most developerd. In the examples given, the two lateral leaves of the trio are simply pimate. But, sometimes, one or both inay be hipinnate: or the middle one may be a complete large emphylode, while one at least, of the lateral ones may be a smaller empllyllede. The two lateral leaves mubably develop from reserve-mols. Lubbok desmibes and figmes a seedling of A. rertieillatt. of which the sixth leaf was representel by a single enphyllode, but some of the succeeding ones ly broken or complote whorls of emphyllodes. Other species may also have whorler or verticillate or gronped euphyllodes: but, as far as I know, nothing analogons to it is known in bipinnate Aeaeias. Fig. 2 shows the terminal seta: amt the retarding effect of the presence of the serond pair of pime on the flattening of the internote, and for some distane below.

Figs. 4, 5, and 7 show a pair of leaflets, or two ord leaflets, on the margins of the euphyllode at ilifferent levels. Sometimes a pinna, or a leaflet or leaflets, may be quite mose to the base. indicating that the petiolar portion of the emphyl-
lode is relatively rery short. I have two examples of nearly complete euphyllodes, one of which has an apical pair of pimne, and a large leaflet with an oppusite pair of small ones, on the margin ${ }^{s}$ inch from the base; while the other has an apical pinna with two pairs of leaftets, and a marginal pinna with two pairs of leaflets, 3 inel from the base. Another specimen has one pair of pinnex, of whicll one has a terminal leaflet. I have one leat with three complete pairs of pinna.

Figs. 4, 8, 9, 10 show foliaceous terminal seta. Two of them lave marginal leaflets, and in one case, a pinna which shrivelled in drying.

I am indelted to Mr. C. 'T. Musson for some very interesting reversionshoots from a slirub of A. podalyruafolia, which had been cut back. These are particularly interesting, becanse this species has short emphyllorles, which are nearly as broad as they are long. up to $1 \frac{1}{2} \times 1 \frac{3}{16}$ inches. Serenteen leaves show no flattening on the lower side, and fifteen of these have tro pairs of pinne. Three of these are figured. (Plate vii., figs. 1-3.) They all show much flattening of the upper side of the leat-axis up to the level of the lower pair of pinne, and some tlattening of the internode. But the lower, broad, tlattened portion has a loose end. The presence of the lower pair of pimme, by retarding the flattening of the internodal contribution to the complete euphylode and blocking the way, left the portion below the luwer pair of pinne in the luref, in all three cases; and I have others more or less like them. Two examples, with one pair of pinna ($1 P$. rii., figs. $4-5$) show very well the rudiment of the terminal pima. without leallets, with the terminal seta. which, in this species, unless areidentally missing, is nsually conspicuons on the early enplyylodes, and particularly on the roung ones. It is so long sometimes that, when dry, it twists. It is obrious that, in this ease, the euphyllode comprises two or at the most, three, internodes, and the petiole. If it were not enphyllodineons, this species would be a bipinnate Acacia with three pairs of pinne, occasionally, perhaps, four at the most. Cambage has recently deseribed amd figured the seedling ot this species [Part \because. of his papers].

The finest examples of reversion-shoots and suckers, I have yet seen, are two lots of A. implexa (?), which I ruite casually met with in Mareh, 1919: One lot comprises specimens from two plants. 8-10 feet high, growing close together. that had been badly scorched by a bush-fire, wheh killed the parts abore gromis. but without injury to the root-system. Reversion-shoots from the base of the stems, and suckers from some of the roots came up freely. I fortunately found them in the early stages; and specimens were taken, from time to time, over a period of six months, until what were left had only euphyllodes, or a few hipimnate leaves of no importance. The seeond lot was probured from some half dozen plants at the side of a country-road, which hat heen mischiewonsh broken or cut off a little above the ground.

From the eomplete collection, I have been able to select a sequence of leaves. which include-(1) simply pimnate leaves, present on two suckers, but, if developed, missing on the reversion-shoots: (2) hipimate leaves with from one to eleven actual or potential pairs of pimme. some of the lowest pairs being represented by leatlets: and (3) the five late stages of the waning pinnes and the waxing flattening of the long emmon petioles or primary leaf-axes, shown in t'late vii. The entire sequence is not shown, my main olject being to show is many as possible of the best examples illustrating the inversely proportional ratio in which the two antagonists are represented at varions stages. The sulstitution of flattening axes for pime is not a case of "walk in, walk but." It is an intense
struggle between them. The potentially hearyweight euphyllodes knork-ont the bantam pinnæ very promptly in weak seedlings. But, in reversion-shoots, with a well-established root-system to back them up, they put up a much better fight, and are able to prolong the strugglel, hopeless though it is.

These speeimens are most interesting becanse the euphyllodes are so long, up to about 9 inehes, and yet not too narrow. This means that, if they were not euphyllodes, they would be bipinnate leaves with numerous pairs of pinne, up to 15-20. Therefore, they contrast admirably with, and sutpplement the two cases, one with very short and the other with euphyllodes of medium length, already considered. Nevertheless, they show only another phase of the same kind of thing. The three are not speeial eases, but only those of whieh I have been able to get adequate material.

The illustrations (Plates ii.-vii.) nerd little explanation, if it is kept in mind:-
(1) That the sncession of the pinnae in the development of the compound. bipinuate leaves of the Australian Acacias is basipetal, not basifugal, as in the leaves of Jacaranda. In seedlings, the first leaf, or a pair of them, is simply pimnate, a simpler type of those whiel come after it. Then follows an abruptly bipinnate leaf with one pair of pinnæ, representing the replacement of the apical pair of leaflets of the first pinnate leaf, withont any representatives of the other pairs of leaflets. That it is the apical pair, is shown by the presenee of the termiual seta at the apex of the common petiole of every leaf. from start to finish, unless it. is aceidentally missing. Then, in ilue conrse, in the seedlings of the Bipinnatae, of some of the Euphyllodinex, and in reversion-foliage and reversion-shoots of any of them, follow leases witls two. three, or more up to the complete number, or approximating thereto. These represent always the apieal pair and one, two, three, or more pairs, as the case may he, up to the full number, of suceessive pairs of pinnæ, in orter next below the apieal pair. The apieal pair is always present in every leaf, howerer many pairs of pinnæ may he present, expept in the decadent stages of the ontgoing pinnæ, as illustrated in Plate vii.
(2) Therefore, if the full possible number is not present, the shortage is in the lower portion of the series. Also, the good, well-developed pinnæ, if all of them are not equally well-developed, when a number of pairs are present, are those attached to the upper part of the eommon petiole: and the poor specimens, sometimes only represented by leaflets, are attaried to the lower part of the leaf-axis, as is shown in figs. 1-4 of Pl. vi., and figs. 4 and 6 of Pl. vii.
(3) This provides an opening for the flattening of the axis to make a start on the proximal portion of the leaf-axis, where pinne are absent or ponly developed. If only one pair of pinnæ is present at the apex, the surviving apical pair, as shown by the presence of the terminal seta, the entire leaf-axis may flatten from top to bottom (Pl. iii., fig. 5: Pl. rii., fig. 4). Illustrations of flattening axes with an apical pair of pinne, more or less resembling my examples, are commonly shown in texthooks. as confirmation of the statement, that the so-ealled phyllodes of Acacias are flattened petioles which have lost their blades!
The figures of Plates iv.-v., and fig. 5 of PI. vi.. show a few pairs (2-5) of strong pinne attached to the upper part of the leaf-axis: well-marked flattening of the axis in the lower part; but retarded flattening where the pinnæ are situated.
though there may be mmistakable indications of it. Fig. 3 of Pl. ir., and tig. 5 of Pl. vi., show the damping effect of the presence of good pinnax excellently:

Figs. 1-4 of Pl. vi.. show the retarding intluence of the presence of pinne on the flattening, in the leaves with the maximum number ot. pairs of pinne, that 1 lave suceeded in finding. These are very instructive. Leaves with $7-9$ pairs are not shown, only for want of space, and because they do not show anythins more than these do.

Plate vii. shows the last stages of the decarlent pinnex. correlated with a maximum of tlattening of the leaf-axis. Figs. $1,2, \pm$ and 6 , reprenenting the pinna on their last legs, are the only ones of the entire series which lack the apical pair of pimme. Figs. 4 and 5 are particularly instructive, because they show a minimm amount of llattening in the proximal part of the leal-axis, where the forlorn surviving pinnae or leatlets are stranded; and then, distad of them, the flattening som inereases. Fig. 4 has hat two single pimne with a redneed number of leaflets; unfortunately the upper portion of the euphyllode was missing when I got it. Fig. © shows the lowest pair, aml the one next above, represented by leaflets; and then, above these, a pair of reduced pimme, and a distal better pair. The portion of the axis below the lowest leaflet. the real or apparent petiole, is longer than the internole above it-even allowing that it may he the real petiole-but it is relatively rery short. In the face of such evidence as this, can anyone still believe that the so-ealled phyllodes of the Anstralian Acacias are merely thattened leafstalks or petioles whieh have lost their blades?

An interesting paper by Dr_{1}. C. E. Preston, on "Peruliar Stages of Foliage in the Genus Acacia," is contained in the American Naturalist, Vol. xxxyi., p. 727 . September, 1902. This is worth attention, because what is so often taeitly assumed and taken for granted, is diselssed in this paper: namely, to which par of leatlets of the first simply pinnate leaf of a seedling does the single pair of pime of the next lipinnate leaf correspond? Prestom says: "A peculiar tram-sition-stage between the singly pinnate and the bipinnate is sometimes found in seedlings of A. leprosa Sieber, when growing under eultivation. The shadowprints (Figs. 1 and 2) amexed show the nature of this peouliarity. The lower pair of leatets only is replaced hy a pair of strongly developed pinnar, while the rest of the axis runs on singly pimate and rather weak in structure As a rule, no such continuation of the main axis is to be fomm." Shadow-prints of two voung seedlings are given, showing an "almormal thirl leat" in each "ase: the first being simply pimate, the seeond hipimate and the third apparently tripinnate. With all due deference to the antlor, and simply on the hasis of magna est reritus ef precaleat, 1 venture to express the opinion that, having inadergate material, he completely missed the significane of his abmomal leates, and misinterpreted them.

From my standpoint, they are one of two things-(1) eitler examples of tripimate leaves, an apical pair together with a terminal pinna (the midhle one): or. what is more probalde a complete, apioal pair (the mithle one. and one of the lateral ones) and an incomplete pair next below (the other lateral one, its fellow. missing), the internode which shond hase separated the pairs (romplete or inromplete) mot having lengthened. One rannot decide whel view is correct beranse the lerminal seta is not mentioned: and it is not reeornisable in the small shadow-prints. In beth cases, the stalk below the three pinne is the common petiole or primary leaf-axis, amd not the petiole only: as the anthor supposes: as is sugrested by the length of it.

Cambage has examined seedlings of more spectes than any wher writer; deseriptions and illostrations of fifty-five have already been pmbished. He has not so far found a leaf of a seedling with the terminal pima present, but he has
wet with one instance of it in the leaf of a sucker. I have had the opportunity of looking ower several thousant wild seedlings, representing about twelve specie.s, in the hope of funcing anomalies, but with little success. I have not yet seen a leaf' of any Aracia, seedling or adult, which had a complete terminal pinna; but a leatless thread-like refresentative of its axis, with a terminal sefa, is sometimes to be found in the leares of reversion-shoots (Pl. iii., figs 5, B; Pl. viii., figs. 5-fi). I have also one bipinnate leat of a seeding, of which one pima has a temmal leatlet. 1. leproser is an Anstralian speries, but no other descriptions of seedings have been published. If the leaves of Preston's fwo seedings really represent iripimate leaves (that is the apical pair. together with a terminal pinnal, thes are, as yet, the first to be reforded.

What I believe to be the correct explanation of them is, that they are merely examples like the three slown in my Pl. iii., fig. 3: and Pl. riii.. figs. 9-11. The first of these is the leat of a reversion-shoot. I have others like it: and others with the two pairs complete, but separated by a rery short internode. The second is a leat of a seedling of A. myrtifolie, and the only specimen I have. But Cambage has figured similar leaves of A. Duxifolia and A. pycnomtha [Acacia Seedlings. Part iii., f. 303]. When the terminal seta is taken account of, there is no difficulty in interpeting them. The third is a leaf of A. decurrens, which is eomparalle with the others.

1 hare failen to find any evidence whaterer that the lowest or froximal pair of Jeaflets of the first simply pinnate leaf is ever replaced by a pair of strongly developet pimme, while the rest of the axis runs on simply pinnate. am rather weak in strueture. On the contrary, the apieal pair of leallets is replaced ly an apical pair of pimme and there is no replacement at all uf the lower leablets of the first pinnate leaf hetore the transition of "omplete euphyllodes in seedlings, of many species, thongh there is in others, as in the Bipimnate. Therefore in every leaf, at every stage of development, whatever else may be present or absent. the apical pair is nomally present, and, in the rery early stages, it is the ouly pair: The succession of the pinne in the development of the bipimate leaf is basipetal.

The leaf of A. Iccurrens figured by Preston as "showing a tendency towards a triple pinnation," that is. "showing clearly the thind degree on some of the basal Jeaflets of the pinna," is a remarkable but rare aberration. This species is a very common one in the Sydney district, and I have examined many leaves: but I have not sureeeted in finding specimens of this or any other Acacia wheh show it. But I have collected three leaves of Jacaranda, whieh have a few of the basal leaflets of the lowest pinne exmmplifying a tendency thward a triple pinnation.

But what Preston has to say about the leaves of A. heterophylln, of whith he gives illustrations. is very important. This is a species indigenons to the Island of Pourbon and Mauritius or both of them. I believe: and I camot hear that it is cultivated in Sydney gardens. It is sumetimes mentioned in textlowks. and it appeass to be a remarkable sjecies, like A. meldonoxylon, I. rulbida, ano perhaps some others, all of whith are worthy of a detailed study of gradational series of plants of various ages. Preston says- "There was also foumd a fairls large number of stages [of A. heterophilla] which lead one to doubt greatly whether in all eases it is the petiole only which is transtormed in the phelbors, ans pinne. They illustrate rery well the inversely proportional ratio in wheh the proximal one. The prints which follow may, to be sure, represent mere anmaties, hut from their mumber, at least, they eamot but raise in one's mind a certain hesitation to comsider the existene of a law as to methorl in any way estabhinhed.

Here the flattening appears in some cases entirely on the distal portions without affecting the petiole, in others both petiole and rhachis are involved to rarie? extents. How these are to be interpreted under one general law seems incomprehensible."

Preston does not say whether the seven leaves figured are such as are to be found on ordinary plants, whose growth has not been interfered with by pruning or otherwise. In the abseuce of descriptions of the plants or of seellings, and of personal knowledge of the species. or of any other like it. I cannot settle the point. But they are certainly comparable with some of the leaves of reversionshoots. as shown in my Plates, especially Pl. iiio-vi. They are pietures of the contest between the flattening common petioles, or leaf-axes, aud the pairs of pinna. They illustrate very well the inversely proportional ratio in which the two antagonists are present in any partienlar leaf; and how, if pimne are present, no matter where they may he located, the tlattening of the leaf-axis is retarded where they are situated; and how. if they are absent on some part of the axir. no matter where the flattening of the axis is correspondingly fasoured in that prarticular region. The localised damping or retarding effect of the presence of the pinne on the flattening of the leat-axis is rery well shown in some uf his figures.

But the idea that the so-called phyllodes of some Aeacias are flattened petioles which have lost their blades, and of others, that they are flattened axes which have lost their pinnæ, is erronems. There are not two kinds of phyllodes. socalled, of Acacias. The two hypotheses, that there are, camot be larmonised. Therefore, I am prepared to go further than Preston, and say that the attempt to interpret them under one definite law not only seems, but is, incompreheusible, inasmuch as it is not possible. The so-ealled phyllorles of Australian Acacias are not flattened petioles which have lost their blades, as both seedlings, when they are correctly interpreted, and reversion-foliage and reversion-shoots demonstrate. Therefore, they have been improperly called phyllodes: and consequently any attempt to interpret them in tems of something which they are not. cannot but be futile. But when it is realised that the euphyllodes of all the Acacias of which we have sufficient knowledge, are flattened leat-axes or common petioles, which hare lost their pinnæ. then it beeomes possible to say. that there is but one definite law which applies to all that are known, and that it is a readily comprelsensible law.

I regret that I am mable to consult Reinke's paper.* referred to by l'reston. It is not arailahle in Sydney. The abstract of it in the Tournal of the Royal Nieroseopical Societr (1597. p. 549) does not include Reinkes views about phyllodes. Cnder the cireumstances. Preston supplies what whe ehiefly wants to know, namely-"-1. rubida A. Cunn. and A. heterophylla Willd., have alreats been deseribed by Reinke. and in his artiele one stage in the transition as it oceurs in 1 . heterophylla is figurel. Aecording to that author, the change is merely a gradual flattening of the petiole, arcompanied be the reduetion of parts more distal." It is not surprising that Preston was unable to reconcile the riews here staten. with the characteristies of the leares which he figures.

Foehel, in lis "Organography of Plants" (Vol. i.. p. 166, fig. 102) remarks"The best known and most frequently quoted are the speeies of deacia which produee phyllodes. The phyllodes arise be the broaldening in a vertical direction of the leaf-stalk, sometimes also of the leaf-milrib. whilst the laminil aborts. Seedling plants (Fig. 102), however, have, without exception, so far as they have neens examined. leares whirh are like those of the species-possessing a hipinuate

[^6]lamina and a normal leaf-stalk. As successive leaves are formed, the leaf-stalk gradually broadens, whilst the lamina is reduced until the form of the phyllode is attained. In some species foliage-leaves may again appear after the phyllodes, for instance in A. heterophylla."

Also, in Vol. ii., p. 355 he adds-"The best examples of the formation of phyllodes are to be found in a number of Australian species of Acacia." It is nsnally said that in the phyllode of Acacia the lamina is entirely wanting. This is incorrect, for the lamina can always be seen upon the primordium. . . . In some species, for example A. floribunda, A. melanoxylon, and A. uncinata, there are transition-forms which show that the rhachis may have a share in the formation of the phyllode."

Inaderquate material, and the disregard of the presence, the meaning, and the significance of the terminal seta, as in so many other cases, are herein responsible for the misinterpretation of seedlings. What Goebel calls the primordium of the lamina, which is always present upon the phyllode, I should term the terminal seta merely, or sometimes, in the young or early euphyllodes (but not in late ones), juvenile stages of a pair of pinnæ, always the apical pair, together with the terminal seta, at the apex of the flattened common petiole. His suspicion that, in some species, the so-called phyllodes are something more than flattened leaf-stalks, is interesting. I regret that I have not been able to make more use of Goebel's important treatise. I have been nuable to purchase or borrow it; and there are so few copies in Srdney, that one can consult them only under time-consuming conditions.

ENPLANATION OF PLATES i.-viii.

REFERENCE LETTERS.

a. t. $p_{\text {. }}$, leafless, thread-like axis of the terminal pinna-f. t. s., foliaceous terminal seta- t. $p_{\text {., }}$, terminal pinna- t. s., terminal seta
Plate i.-A. suazeolens (reversion-foliage).

Figs. 1.7 and 11 show leaves with two pairs or one pair of good pinnæ on the upper part of the common petiole or primary leaf-axis; and poorer pinne with a reduced number of leaflets, or a pair of leaflets or odd leaflets on the margin of the lower part of the flattening leaf-axis below the second good pair (when there are two pairs), that is, on the developing half-euphyllode (the flattening on the upper side of the axis only), or euphyllode. Note the inversely proportional ratio in which the two antagonists are present.

Figs. 2 and 6 show also three leaves at a node, the two lateral ones simply pinnate.

Figs. 4, 7, 9, 10 show green, foliaceous, terminal setæ.
Plate ii.-A. implexa (?).

Fig. 1-An average complete euphyllode.
Fig. 2-A seedling showing the transition from a bipinnate leaf with one pair of pinnæ (the apical pair) to a complete euphyllode on the fifth leaf. The fourth leaf is a portrait of the two juvenile antagonists-a pair of pinnæ (bantam), and the leaf-axis or common petiole to which they are attached (the potential heavyweight, which, after the tussle is all over, attains the dimensions of the example shown in Fig. 1).

Plate iii.

Fif. 1.-L'pper portion of a leaf of Caesalpinia Gilliesii to show the terminai pinna present in this species. This, in the Acacias, aborts, and is represented by a remnant, the terminal seta.

Fig. 2.-Leat of a seedling of A.discolor, showing the basipetal, incomplete developments of the leaflets of the middle pair.

Figs 3-6.-Leaves of Reversion-shuots of sl. implexa (\%).
Fig. 3.-Back view of a leal with what appears to be a terminal pinna. The middle one and the one on the right constitute the apical pair as indicated by the presence of the terminal seta (discernible with a lens in the photo). The one on the left, whose fellow did not develop, represents an incomplete second pair next below, very close to the apical pair because the internode did not lengthen.

Fig. 4.-Leaf with one pinna of the second pair missing. Two alternate, or perhaps odd pinnæ below, represented by large leaflets.

Fig. 5.-Leaf with the apical pair of pinnæ only, and a terminal pinna represented by a leafless thread-like axis, and a terminal seta. The whole of the axis is more or less flattened.

Fig. 6.-Another leaf with three pairs of good pinnæ, and a rudimentary, leafless, terminal pinna, and a terminal seta. Some flattening of the axis throughout. but retarded where the pinnæ are.

Plate iv.

Fig. 1.-Complete leaf (back view) of A. Baileyana, with four pairs of pinnæ, and a terminal seta, visible with a lens. Note the excessively short petiole.

Figs. 2.-Leaves of reversion-shoots of A. implexa, including two complete euphyllodes. The branchlet shows the order of the succession. Note the inversely proportional ratio in which the two antagonists are present-good pinnæ on the upper part of the axis; much flattening on the lower part, extending upwards, but retarded where the pinna are (especially in Fig. 3). Also the termmal seta at the tip of the larger phyllode; rudimentary pinnæ in the smaller one.

$$
\text { Plate } r \text {-Leaves of Reversion-shoots of A. implexa (s). }
$$

Figs. 1-5.-Most interesting stages of the contest when the antagonists are fairly equally matched. Good pinnæ on the upper part of the axis: flattening most marked on the lower part, extending upwards, but retarded where the pinnæ are. Note the terminal setre, with some indication of the developing pinnee of the apical pair in the youngest euphyllodes, and the terminal seta alone in the largest one.

$$
\text { Plate vi-Leaves of Reversion-shoots of } A \text {. implexa (?). }
$$

Figs. j-6 supplement the series shown in Plate $\begin{array}{r}\text {., } \\ \text { and are fine specimens. }\end{array}$
Figs. 1.3 , with 11 and 10 pairs of pinnæ, the maximum number, as yet seen, show the pinne doing their very best. Some of the lowest pitnæ show reduction in the number of leaflets. The lowest pinne in all three are represented by leaflets. The presence of so many pinnæ has obviously put the brake on the flattening of the axes. Note the short petiole in Fig. 3, and the terminal seta in Fig. 5. Also, that. in the leaves of this species, the pinne are attached to the midrib, and not to the margin, as in A. suazeolens (P1. i.).

> Plate vii-LLeares of Reversion-shoots of A. implexa (?).

Figs. 1.7. Six decadent stages of the waning pinne, varionsly locaterl, and a complete euphyllode. The common petioles or primary leaf-aves show more or less flattening from lase to apex. The distal portion of No. 4 is missing: but note the retardation of the flattening in the lower portion of this and No. fo. where the reduced pinne, or leaflets are: and how the flattening increases distarl of the distal pinna or pair of them. Note also the short petiolar portion of No. 6. in which the two proximal pairs of pinnæ are representer by leaflets.

Plate riii.
Figs. 1-4.-Four, developing half-euphyllodes of A. podalyriaefolia with two pairs of pinm; some flattening of the internode; and the broad flap-like flattening of the axis below the second pair of pinnæ, with a loose end, which, but for the presence of the lower pair of pinnæ, would be joined up with the apex by the fully flattened, internodal portion.

Figs. 5-7.-One half-phyllode, and one nearly complete, with one pair of pinnæ, and a rudimentary, leafless, terminal pinna and terminal seta, of the same species.

Fig. 7.-Young euphyllodes of the same species, showing the conspicuous terminal setæ.

Fig. 8.-Three very young leaves of A.discolor, showing the terminal setæ of both the rhachis, and of the partial rhachises.

Fig. 9.- Upper portion of seedling of A. mytifolia with the fifth leaf apparently tripinnate. The middle one and the one on the right, with the terminal seta between but behind them, are the apical pair. The one on the left represents an incomplete second pair next below, the internode not having lengthened.

Fig. 10.-Upper portion of a leaf of A. decurrens, showing the same sort of thing, the middle pinna and the one on the left being the apical pair. The rest of the leaf, together with eight pairs of pinnæ have been removed.

Fig. 11.-U'pper portion of a not mature remarkable leaf of Jacaranda (the rest of the leaf, with eleven pairs of pinnæ having been removed!, showing four pairs of pinnæ towards the apex, and the terminal pinna, all represented by leaflets, some with serrated edges; and the pinnæ with terminal leaflets.

Mr. J. H. Campbell, Hon. 'Treasurer, presented the balance sheets for the year 1919, duly signed by the Anditor, Mr. F. H. Rayment, F.C.P.A., Incorporated Accountant; and he moved that it he received and adopterl, whieh was carried manimously.

No ralid nominations of other Candidates Laving been received, the President deelared the following elcetions for the ensuing Session to be duly made:--
president: Mr. J. J. Fleteher, M.A., B. Se.
members of couicil (to fill six vacaneies) :-Messis. J. E. Carne, F.G.S., H. J. Carter, B.A., F.E.S., Prof. T. W. E. Davirl, C.M.G., D.S.O., D.Se., F.R.S., Prof. W. A. Haswell, M.A., D.Se., A. H. S. Lucas, M. A., B. Se., and J. H. Maiden, I.S.O., F.R.S.
auditor: Mr. F. H. Rayment, F.C.P.A.
It was resolved, on the motion of Miss S. Hynes, seconded by Mr. A. G. Hamilton, "that it is the opinion of Members of this Society that in the interests of Seience, the Rowan Collection of paintings should be retained in this the Mother State."

On the motion of Mr. A. G. Hamilton, a rery cordial rote of thanks to the retiring President, Mr. J. .J. Fleteher, was carried by aeclamation.

[^0]: * For further details see the Syriney Morning Herald, February 26, 1920, p. 5 to which I am inflehted for the particulars quoted.
 †Thomas, W. B., "A Better England-Not a Worse." Nineteenth Century, No. 514, December, 1919, P. 1013.

[^1]: "tray" : Botanical Text-hook (1887). p1, 110, 42ti.

[^2]: *C. Morren. Bull. Acm. Bele., 1852, t.xix., p.44.
 §Misters, Vegetahle Teratologr. p, 329, 1869.

[^3]: - Natural llistory of Plants, Enerlish Tramatation, Vol. i., pria37.

[^4]: xlix -liii., 1915-19.

[^5]: * Natural History of Plants, English Elition, Vol. i., p. 335.
 + But see the reference to Goekel's views postea, p. 44.

[^6]: "Reinke, J.. "Untersuchnngen ibher die Assimilationsorqane der Leguminosen." Pringsheim's Jahrh. f. wiss. Bot. Brk. xxx., 1896.

